
Katello 3.4 Documentation

3.4

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

2.4 Puppet

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 GPG Keys

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

6. Troubleshooting

7. Api Documentation

Katello 3.4 Installation
These instructions are for installing Katello 3.4, but the latest stable is 3.18.

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

Note: After installation of Katello, be sure to trust Katello’s CA certificate on your system. This is required for the encrypted
NoVNC connections. You will find katello-server-ca.crt in the /pub directory of your Katello server (e.g.
http://katello.example.com/pub/katello-server-ca.crt).

Important Note for Existing Installations
Katello does not currently support installation on existing Foreman deployments. DO NOT attempt to install Katello on anDO NOT attempt to install Katello on an
existing Foreman deploymentexisting Foreman deployment, unless you are a Foreman developer and willing to debug the broken configuration that will
result from attempting an install on existing system.

Hardware Requirements
Katello may be installed onto a baremetal host or on a virtual guest. The minimum requirements are:

Two Logical CPUs
8 GB of memory (12 GB highly recommended)
The filesystem holding /var/lib/pulp needs to be large, but may vary depending on how many different Operating
Systems you wish to syncronize:

Allocate 30 GB of space for each operating system. Even though an operating system may not take up this much
space now, this allows space for future updates that will be syncronized later.

The path /var/spool/squid/ is used as a temporary location for some types of repository syncs and may grow to consume
10s of GB of space before the files are migrated to /var/lib/pulp. You may wish to put this on the same partition as
/var/lib/pulp.
The filesystem holding /var/lib/mongodb needs at least 4 GB to install, but will vary depending on how many different
Operating Systems you wish to syncronize:

Allocate around 40% of the capacity that has been given to the /var/lib/pulp filesystem
The root filesystem needs at least 20 GB of Disk Space

Required Ports
The following ports need to be open to external connections:

80 TCP - HTTP, used for provisioning purposes
443 TCP - HTTPS, used for web access and api communication
5647 TCP - qdrouterd - used for client and Smart Proxy actions
9090 TCP - HTTPS - used for communication with the Smart Proxy

Production
Katello provides a puppet based installer for deploying production installations. Production installations are supported on the
following OSes:

Katello can only run on an x86_64 operating systems.

Installation may be done manually or via our recommended approach of using forklift.

Required Repositories
Select your Operating System: Red Hat Enterprise Linux 7

OSOS

CentOS 7 X

RHEL 7 X

yum-config-manager --disable "*"
yum-config-manager --enable rhel-7-server-rpms
yum-config-manager --enable rhel-7-server-optional-rpms
yum-config-manager --enable rhel-7-server-extras-rpms

yum -y localinstall https://fedorapeople.org/groups/katello/releases/yum/3.4/katello/el7/x86_64/katello-repos-latest.rpm
yum -y localinstall https://yum.theforeman.org/releases/1.15/el7/x86_64/foreman-release.rpm
yum -y localinstall https://yum.puppetlabs.com/puppetlabs-release-pc1-el-7.noarch.rpm # will install with Puppet 4
#yum -y localinstall https://yum.puppetlabs.com/puppetlabs-release-el-7.noarch.rpm # use this instead if you prefer Puppet 3

yum -y localinstall https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
yum -y install foreman-release-scl

Installation
After setting up the appropriate repositories, update your system:

Then install Katello:

At this point the foreman-installer should be available to setup the server. The installation may be customized, to see a list of
options:

NoteNote

Prior to running the installer, the machine should be set up with a time service such as ntpd or chrony, since several Katello features
will not function well if there is minor clock skew.

These may be set as command line options or in the answer file (/etc/foreman-installer/scenarios.d/katello-answers.yaml).
Now run the options:

Forklift
Foreman provides a git repository designed to streamline setup by setting up all the proper repositories. Forklift provides the
ability to deploy a virtual machine instance via Vagrant or direct deployment on an already provisioned machine. For details on
how to install using forklift, please see the README.

yum -y update

yum -y install katello

foreman-installer --scenario katello --help

foreman-installer --scenario katello <options>

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.4 Documentation

3.4

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

2.4 Puppet

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 GPG Keys

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

6. Troubleshooting

7. Api Documentation

Smart Proxy Installation
Hardware Requirements

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

The Smart Proxy server is only supported on x86_64 Operating Systems

2 Two Logical CPUs
8 GB of memory
Disk space usage is similar to that of the main Katello server Installation

Required Ports
At a minimum, the following ports need to be open to external connections for installation:

80 TCP - HTTP, used for provisioning purposes
443 TCP - HTTPS, used for web access and api communication
9090 TCP - HTTPS - used for communication with the Smart Proxy

See the User Guide for additional information about Smart Proxy services and required ports.

Installation
Install needed packages:
The same yum repositories need to be configured on the Smart Proxy server as the main Katello server. See the installation
guide for the list of required repositories.

Once you get the repositories configured, install the formean-proxy-content package on the Smart Proxy

Generate Certificates for the Smart Proxies
Prior to installing the Smart Proxy, we need to generate certificates on the main KatelloKatello server:

In the above example, replace ‘myproxy.example.com’ with your Smart Proxy’s fully qualified domain name. This will generate
a tar file containing all the needed certificates. You will need to transfer those certificates to the server that you will install your
Smart Proxy on using whatever method you prefer (e.g. SCP).

The foreman-proxy-certs-generate command will output an example installation command. For example:

Install Smart Proxy
Use the provide installation command from foreman-proxy-certs-generate , and tailor for your own purposes as needed. The
defaults will give you a Smart Proxy ready for Content-related services.

See the User Guide to learn about setting up provisioning related services, as well as the Foreman manual

yum install -y foreman-proxy-content

foreman-proxy-certs-generate --foreman-proxy-fqdn "myproxy.example.com"\
 --certs-tar "~/myproxy.example.com-certs.tar"

Installing Done [100%] [.....................]
 Success!

 To finish the installation, follow these steps:

 1. Ensure that the foreman-installer-katello package is installed on the system.
 2. Copy ~/myproxy.example.com-certs.tar to the system myproxy.example.com
 3. Run the following commands on the Smart Proxy (possibly with the customized
 parameters, see foreman-installer --scenario foreman-proxy-content --help and
 documentation for more info on setting up additional services):

 yum -y localinstall http://katello.example.com/pub/katello-ca-consumer-latest.noarch.rpm
 subscription-manager register --org "Default_Organization"
 foreman-installer --scenario foreman-proxy-content\
 --foreman-proxy-content-parent-fqdn "katello.example.com"\
 --foreman-proxy-register-in-foreman "true"\
 --foreman-proxy-foreman-base-url "https://katello.example.com"\
 --foreman-proxy-trusted-hosts "katello.example.com"\
 --foreman-proxy-trusted-hosts "myproxy.example.com"\
 --foreman-proxy-oauth-consumer-key "UVrAZfMaCfBiiWejoUVLYCZHT2xhzuFV"\
 --foreman-proxy-oauth-consumer-secret "ZhH8p7M577ttNU3WmUGWASag3JeXKgUX"
\
 --foreman-proxy-content-certs-tar "/root/myproxy.example.com-certs.tar"
 The full log is at /var/log/foreman-proxy-certs-generate.log

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.4 Documentation

3.4

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

2.4 Puppet

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 GPG Keys

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

6. Troubleshooting

7. Api Documentation

Client Installation
Client machines can be added in one of two ways: manually or via a provisioned host.

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

Manual
Install the appropriate Katello client release packages. For CentOS 6, you will also need to enable the COPR repository for
subscription-manager.

Select your Operating System: Enterprise Linux 5 (CentOS, etc.)

Now you are ready to install the katello-agent:

Provisioned
In order to install the katello-agent package on a host you are provisioning, you will need to make the appropriate client
repository available within your Katello. The first step is to either create a new product or add to an existing product, the
appropriate client repository from the dropdown in the manual section above. After you create the new repositories, they will
need to be synced locally. Next, you will then need to add them to the relevant content view(s) for the hosts you are wanting to
provision. At this point, a new version of the content view can be published and promoted to the appropriate environments
that you are wanting to provision a host into. At this point, you can go provision a host and the host will install the katello-agent
package during setup.

When provisioning new clients that should use Puppet 4, set a parameter called ‘enable-puppet4’ to ‘true’, so the templates
know which package to install and where to place the configuration. This parameter can be placed at the host, host group, or
another appropriate level of the hierarchy.

yum install -y https://fedorapeople.org/groups/katello/releases/yum/3.4/client/el5/x86_64/katello-client-repos-latest.rpm
yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-5.noarch.rpm

yum install katello-agent

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.4 Documentation

3.4

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

2.4 Puppet

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 GPG Keys

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

6. Troubleshooting

7. Api Documentation

Katello Upgrade

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

Pre-upgrade considerations
Before you upgrade, you need to run the upgrade check script that will check for any active tasks, your version of Katello, and if
there are any content hosts that will be deleted (see below). This script is included in Katello 2.4.3.

To run the script:

Step 1 - Backup
If Katello is running on a Virtual Machine, we recommend to take a snapshot prior to upgrading. Otherwise, take a backup of
the relevant databases by following the instructions here.

Step 2 - Operating System
Ensure your operating system is fully up-to-date:

NOTENOTE: If kernel packages are updated here (e.g. upgrading el 6.6 to 6.7), you must reboot and ensure the new kernel and
SELinux policy is loaded before upgrading Katello.

Step 3 - Repositories
Update the Foreman and Katello release packages:

RHEL7 / CentOS 7:

Step 4 - Update Packages
Clean the yum cache

Update the required packages:

Step 5 - Run Installer
The installer with the –upgrade flag will run the right database migrations for all component services, as well as adjusting the
configuration to reflect what’s new in Katello 3.4

Congratulations! You have now successfully upgraded your Katello to 3.4 For a rundown of what was added, please see Congratulations! You have now successfully upgraded your Katello to 3.4 For a rundown of what was added, please see releaserelease
notesnotes.!.!

If for any reason, the above steps failed, please review /var/log/foreman-installer/katello.log – if any of the “Upgrade step”
tasks failed, you may try to run them manaully below to aid in troubleshooting.

foreman-rake katello:upgrade_check

yum -y update

 yum update -y https://fedorapeople.org/groups/katello/releases/yum/3.4/katello/el7/x86_64/katello-repos-latest.rpm
 yum update -y https://yum.theforeman.org/releases/1.15/el7/x86_64/foreman-release.rpm
 yum update -y foreman-release-scl

yum clean all

yum -y update

foreman-installer --scenario katello --upgrade

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.4 Documentation

3.4

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

2.4 Puppet

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 GPG Keys

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

6. Troubleshooting

7. Api Documentation

Smart Proxy Upgrade
Step 1 - Operating System

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

Ensure your operating system is fully up-to-date:

NOTENOTE: If kernel packages are updated here (e.g. upgrading el 6.6 to 6.7), you must reboot and ensure the new kernel and
SELinux policy is loaded before upgrading Katello.

Step 2 - Repositories
Update the Foreman and Katello release packages:

RHEL7 / CentOS 7:

Step 3 - Update Packages
Clean the yum cache

Update packages:

Step 4 - Regenerate Certificates
On the Katello server, regenerate the certificates tarball for your Smart Proxy:

And copy them to your Smart Proxy:

Step 5 - Run Installer
The installer with the –upgrade flag will run the right database migrations for all component services, as well as adjusting the
configuration to reflect what’s new in Katello 3.4

Congratulations! You have now successfully upgraded your Smart Proxy to 3.4 For a rundown of what was added, please seeCongratulations! You have now successfully upgraded your Smart Proxy to 3.4 For a rundown of what was added, please see
release notesrelease notes.!.!

If for any reason, the above steps failed, please review /var/log/foreman-installer/foreman-proxy.log – if any of the “Upgrade
step” tasks failed, you may try to run them manaully below to aid in troubleshooting.

yum -y update

 yum update -y https://fedorapeople.org/groups/katello/releases/yum/3.4/katello/el7/x86_64/katello-repos-latest.rpm
 yum update -y https://yum.theforeman.org/releases/1.15/el7/x86_64/foreman-release.rpm

yum clean all

yum update -y

yum install foreman-proxy-content

foreman-proxy-certs-generate --foreman-proxy-fqdn "myproxy.example.com"\
 --certs-update-all\
 --certs-tar "~/myproxy.example.com-certs.tar"

scp ~/myproxy.example.com-certs.tar myproxy.example.com:

foreman-installer --scenario foreman-proxy-content --upgrade\
 --foreman-proxy-content-certs-tar ~/myproxy.example.com-certs.tar
\
 --certs-update-all --certs-regenerate true --certs-deploy true

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.4 Documentation

3.4

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

2.4 Puppet

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 GPG Keys

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

6. Troubleshooting

7. Api Documentation

Client Upgrade
When upgrading clients there are 2 scenarios: manually added clients and provisioned clients.

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

Step 1 - Update Repositories
Manually Added Clients
Update the Katello client release packages:

Select your Operating System: Enterprise Linux 5 (RHEL, CentOS, etc.)

Provisioned Clients
If the katello-agent was setup during provisioning from a locally synced repository then you will need to go through some
initial setup to add the 3.4 client repositories to your Katello for each version needed. After you create the new repositories,
they will then need to be added to the relevant content view(s) and the older versions removed. At this point, a new version of
the content view can be published and promoted to the appropriate environments. Once the new package is available the
clients can be updated following the next steps.

Step 2: Update Packages
Clean the yum cache

Update packages:

yum update -y https://fedorapeople.org/groups/katello/releases/yum/3.4/client/el5/x86_64/katello-client-repos-latest.rpm
yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-5.noarch.rpm

yum clean all

yum update katello-agent

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.4 Documentation

3.4

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

2.4 Puppet

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 GPG Keys

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

6. Troubleshooting

7. Api Documentation

Katello 3.4 (Oud Bruin) Release Notes
For the full release notes, see the Changelog.

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

Features
File Repository Additions
The file repository has been enhanced with the addition of a top level page for seeing all file content for a given organization.
As well, file content can now be managed per repository by seeing a list of files in a given repository and removing individual
files.

Repository Force Sync
Two new options are now present when syncing to help alleviate two issues that users occasionally encounter. These options
are available under the ‘Advanced Sync’ option under the repository details page and via Bulk Product selection. These issues
are:

1. I do not see content locally that is in the upstream repo and resyncing shows nothing new to sync (Complete Sync)
2. Some rpm has become corrupt or been deleted locally and i need to force them to be resynced (Validate Content Sync)

Content View Force Republish
On a Content View Version publish or promotion, we were previously regenerating the metadata in the base Library version of
the repository. This would happen even if nothing had changed in the repo, and caused pulp to perform extra steps during a
Smart Proxy w/ Content sync as the revision number in the repomd.xml file had changed. Now we default to not regenerating
the metadata if nothing has changed in the repo. The main benefit of this is that it speeds up Smart Proxy w/ Content syncs.

UI Overhaul
Katello 3.4 comes with UI improvements and over all changes to pages in Katello. The main pages no longer feature the
master-detail view and are now single pages with transitions between using breadcrumbs.

Candlepin 2.0 Support
The addition of Candlepin 2.0 brings performance improvements for subscriptions and client actions that need to interact with
the Candlepin API.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.4 Documentation

3.4

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

2.4 Puppet

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 GPG Keys

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

6. Troubleshooting

7. Api Documentation

Hammer
What is the CLI?

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

The Hammer CLI provides users with a command-line interface for interacting with Katello. It’s our goal to make all
functionality that’s accessible through Katello’s Web UI also available through Hammer so that users may use Hammer for their
entire Katello workflow.

Installation
The first step to install the CLI is to setup the appropriate repositories: foreman, katello and epel.

Select your Operating System: Red Hat Enterprise Linux 6

After setting up the appropriate repositories, install Katello:

How do I use Hammer?
To get started with hammer, view the help:

How do I contribute to Hammer?
See the Katello Hammer CLI project if you want to get setup for contributing to the hammer code.

yum -y --disablerepo="*" --enablerepo=rhel-6-server-rpms install yum-utils wget
yum-config-manager --disable "*"
yum-config-manager --enable rhel-6-server-rpms epel
yum-config-manager --enable rhel-6-server-optional-rpms

yum -y localinstall https://fedorapeople.org/groups/katello/releases/yum/3.4/katello/el6/x86_64/katello-repos-latest.rpm
yum -y localinstall https://yum.theforeman.org/releases/1.15/el6/x86_64/foreman-release.rpm
yum -y localinstall https://dl.fedoraproject.org/pub/epel/epel-release-latest-6.noarch.rpm

yum -y install rubygem-hammer_cli_katello

hammer -u <user> -p <password> --help

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello nightly Documentation

nightly

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Simple Content Access

5.6 Content Hosts

5.7 Content Views

5.8 Disconnected

5.9 Docker Management

5.10 Email Notifications

5.11 Errata

5.12 Glossary

5.13 Content Credentials

5.14 Host Collections

5.15 Lifecycle Environments

5.16 Provisioning

5.17 Puppet Integration

5.18 Red Hat Content

5.19 SUSE Content

5.20 Remote Databases

5.21 Content View Import/Export

5.22 Source RPMs

5.23 Tracer

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Activation Keys
Activation Keys provide a mechanism to define properties that may be applied to Content Hosts during registration. This
includes properties such as:

Lifecycle Environment
Content View
Subscriptions

Repository Enablement
Host Collections

Definitions
Content Host
Host Collection - A statically defined group of Content Hosts.
Subscription - The right to receive the associated content from Katello.

General Features
The following is a high-level summary of the Activation Key features:

Create an Activation Key
Add subscriptions to an Activation Key
Change repository enablement for an Activation Key
Add Host Collections to an Activation Key
Register a Content Host using an Activation Key

Create an Activation Key
To create a new key,

navigate to: Content > Activation Keys
click New Activation KeyNew Activation Key

Name: This required option is used to identify the activation key to command line tools, such as subscription-manager.

Content Host Limit: This option will control how many Content Hosts may be registered using the key. An “unlimited”
value will not place any limits on usage. Specifying a quantity will limit the number of registered content hosts.
Registering with an activation key consumes one of the available limit quantity, while unregistering makes it available
again. (i.e. this quantity is not a usage counter but a limit of actively registered content hosts)

Description: A free form text field that can be used to store a description of the key for later reference or for pseudo-
tagging that can be used to search.

Environment and Content View: Although optional, at least one activation key used during registration must specify a
content view. Activation keys are used in the order specified to subscription-manager meaning the last activation key
with a content view takes precedence.

The following example would use CV_B’s content view:

Or equivalently:

subscription-manager register --org Default_Organization --activationkey NO_CV --activationkey CV_A --activationkey CV_B

subscription-manager register --org Default_Organization --activationkey NO_CV,CV_A,CV_B

For registration to succeed, at least one activation key must be successfully applied. For an activation key to succeed, at least
one of the listed subscriptions must be successfully attached to the registering content host.

Add Subscriptions to an Activation Key
To add subscriptions to a key:

navigate to: Content > Activation Keys
select the desired key from the list
click SubscriptionsSubscriptions
click AddAdd
select the Subscriptions you would like to add
click Add SelectedAdd Selected

The Auto-AttachAuto-Attach setting controls how the group of subscriptions are processed during registration.

When ‘Auto-Attach’ is enabled but no subscriptions are added to the activation key, subscriptions will be automatically added
to cover the installed products. This is equivalent to passing the ‘–auto-attach’ flag to the subscription-manager command:

When ‘Auto-Attach’ is enabled and subscriptions are listed for the activation key, two things will happen. First all subscriptions
for custom products will be attached to the registering content host. Second, the group of Red Hat subscriptions will be
attached as needed to cover the content host’s installed Red Hat products. This is most commonly used when there is a group
of similar subscriptions (eg. several Red Hat Enterprise Linux from different contracts, or guest subscriptions from different
hypervisors) and which one used is not important. Katello’s subscription tooling, Candlepin, will automatically choose the
minimal proper subscriptions from the group.

Finally, when ‘Auto-Attach’ is disabled, all subscriptions on the activation key will attached to the registering content host,
regardless of whether needed to cover an installed product or not. For example, adding an OpenStack Platform subscription
would then allow that product to be installed after registration.

Change Repository Enablement for an Activation Key
To change repository enablement settings using a key:

navigate to: Content > Activation Keys
select the desired key from the list
click Product ContentProduct Content
click the edit icon for the repository content set that you would like to modify
select the desired value (e.g. ‘Override to Yes’, ‘Override to No’, ‘Defaults to Yes’, ‘Defaults to No’)
click SaveSave

View current settings:

subscription-manager register --org=Default_Organization --auto-attach

Change current settings:

Add Host Collections to an Activation Key
To add Host Collections to a key:

navigate to: Content > Activation Keys
select the desired key from the list
click Host CollectionsHost Collections
click AddAdd
select the Host Collections you would like to add
click Add SelectedAdd Selected

Register a Content Host using an Activation Key
The simplest form of registering a content host with an activation key is this:

Click here for more information

Note that modifying an activation key does not change anything on content hosts previously registered with the key.

subscription-manager register --org=Default_Organization --activationkey=$KEY_NAME

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello nightly Documentation

nightly

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Simple Content Access

5.6 Content Hosts

5.7 Content Views

5.8 Disconnected

5.9 Docker Management

5.10 Email Notifications

5.11 Errata

5.12 Glossary

5.13 Content Credentials

5.14 Host Collections

5.15 Lifecycle Environments

5.16 Provisioning

5.17 Puppet Integration

5.18 Red Hat Content

5.19 SUSE Content

5.20 Remote Databases

5.21 Content View Import/Export

5.22 Source RPMs

5.23 Tracer

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Backup
In the following sections, these assumptions are being made with respect to making the backup:

/tmp/backup will be used as the target for backups
All commands are executed as root

Option One: Offline repositories backup
By default, the whole Katello instance will be turned off completely for the entire backup.

Option Two: Online repositories backup
Backing up the repositories can take an extensive amount of time. You can perform a backup while online. In order for this
procedure to succeed, you must not change or update the repositories database until the backup procedure is complete.
Thus, you must avoid publishing, adding, or deleting content views, promoting content view versions, adding, changing, or
deleting sync-plans, and adding, deleting, or syncing repositories during this time. To perform an online-backup of the
repositories, run:

Option Three: Skip repositories backup
There may be situations in which you want to see a system without its repository information. You can skip backing up the
Pulp database with the following option:

Please note you would not be able to restore a Katello instance from a directory where the Pulp database was skipped.

Option Four: Incremental backup
Incremental backups can be used to only store the changes since the last backup:

First take a full backup:

Take 1st incremental backup:

Take 2nd incremental backup:

An example with full backup on Sunday and incremental backup for all other weekdays would look like:

Final check-up
After a successful backup, the backup directory should have the following files:

Additionally, if you ran the backup without skipping the Pulp database, you will see the additional file:

Katello instance should be up and running. Next chapter is dedicated to restoring a backup.

katello-backup /tmp/backup

katello-backup --online-backup /tmp/backup

katello-backup --skip-pulp /tmp/backup

katello-backup /tmp/backup/full

katello-backup /tmp/backup/incremntal1 --incremental /tmp/backup/full

katello-backup /tmp/backup/incremntal2 --incremental /tmp/backup/incremntal1

#!/bin/bash -e
DESTINATION=/var/backup
if [[$(date +%w) == 0]]; then
 katello-backup $DESTINATION
else
 LAST=$(ls -td -- $DESTINATION/*/ | head -n 1)
 katello-backup $DESTINATION --incremental "$LAST"
fi
exit 0

ls /tmp/backup
config_files.tar.gz
mongo_data.tar.gz
pgsql_data.tar.gz

pulp_data.tar

Restore
Full restore
All the following commands are executed under root system account.

Please note only backups that include the Pulp database can be restored. To verify that your backup directory is usable, make
sure it has the following files:

Once verified, simply run:

This command will require verification in order to proceed, as the method will destruct all databases before restoring them.
Once the procedure is finished, all processes will be online, and all databases and system configuration will be reverted to the
state and the time of the backup.

Check log files for errors, such as /var/log/foreman/production.log and /var/log/messages .

Incremental restore
Incremental backups need to be restored sequentially starting with the oldest:

ls /tmp/backup
config_files.tar.gz
mongo_data.tar.gz
pgsql_data.tar.gz
pulp_data.tar

katello-restore /tmp/backup

katello-restore /tmp/backup/full
katello-restore /tmp/backup/incremntal1
katello-restore /tmp/backup/incremntal2

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello nightly Documentation

nightly

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Simple Content Access

5.6 Content Hosts

5.7 Content Views

5.8 Disconnected

5.9 Docker Management

5.10 Email Notifications

5.11 Errata

5.12 Glossary

5.13 Content Credentials

5.14 Host Collections

5.15 Lifecycle Environments

5.16 Provisioning

5.17 Puppet Integration

5.18 Red Hat Content

5.19 SUSE Content

5.20 Remote Databases

5.21 Content View Import/Export

5.22 Source RPMs

5.23 Tracer

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Smart Proxies
What are Smart Proxies?
The Smart Proxy server is a Katello component that provides federated services to discover, provision, control, and configure
hosts. Each Katello server includes a Default Smart Proxy, and you may deploy additional Smart Proxies to remote data
centers. A Smart Proxy server provides the following features:

Content features, including:
Repository synchronization
Content delivery
Host action delivery (package installation updates, etc)
Subscription management proxy (RHSM)

Foreman Smart Proxy features, including:
DHCP, including ISC DHCP servers
DNS, including Bind and MS DNS servers
Realm, including FreeIPA
Any UNIX-based TFTP server
Puppet Master servers
Puppet CA to manage certificate signing and cleaning
Baseboard Management Controller (BMC) for power management
Provisioning template proxy

The Katello Smart Proxy server is a means to scale out the Katello installation. Organizations can create various Smart Proxies
in different geographical locations. These are centrally managed through the Katello server. When a Katello user promotes
content to a particular environment, the Katello server will push the content to each of the Smart Proxy servers subscribed to
that environment. Hosts pull content and configuration from the Katello Smart Proxy servers in their location and not from the
central server.

In a fully configured Smart Proxy, communication is completely isolated between hosts and the Katello server.

What is a Foreman Proxy with Content?
A Katello Smart Proxy is a Foreman Smart Proxy with the addition of content-related services.

Deployment
In the simplest use case, a user may only want to use the Default Smart Proxy. Larger deployments would have a single Katello
server with multiple Smart Proxies attached, with these remote Smart Proxies deployed to various datacenters. Smart Proxies
can also be used to scale the number of hosts attached to a single Katello server.

Installation
See Smart Proxy Installation

Removal
To stop all services and remove all Katello and Foreman related packages, run the following command as root on the Smart
Proxy:

katello-remove

Smart Proxy Isolation
The goal of Smart Proxy Isolation is to provide a single endpoint for all of a client’s communication, so that in remote network
segments, you need only open Firewall ports to the Smart Proxy itself. The following section details the communication clients
need to have with a Smart Proxy. The installation options mentioned are the default starting with Katello 2.2.

Content and Configuration Services
There are five primary areas that require client communication:

1 - Content Delivery
That is, yum. Katello Smart Proxies by default have the Pulp feature, which mirrors content for the selected Lifecycle
Environments.

Install Option:

--pulp=true

Required Connectivity:

Clients need to be able to communicate with the Smart Proxy on port 443/tcp.

2 - Katello Agent
The Katello agent is a goferd plugin which allows you to schedule remote actions on hosts such as package installation,
updates, etc. A Smart Proxy must be running the Qpid Dispatch Router service for this feature to work.

Install Option:

--qpid-router=true

Required Connectivity:

Clients need to be able to communicate with the Smart Proxy on port 5647/tcp

3 - Puppet & Puppet CA
By default, the Puppet CA feature on the Smart Proxy is an independent CA which will manage the certificates for all the clients
registered against the Smart Proxy. Simply select the Puppetmaster and Puppet CA to be the Smart Proxy when creating a
host.

Install Option:

--puppet=true --puppetca=true .

Required Connectivity:

Clients need to communicate with the Smart Proxy on port 8140/tcp.

4 - Subscription Management
Content Hosts utilize Subscription Manager for registration to Katello and enabling/disabling specific repositories.

Install Option:

--reverse-proxy=true

Required Connectivity:

Clients need to talk to the Smart Proxy on port 8443/tcp.

5 - Provisioning Services
When provisioning a host using DHCP/PXE, you will need, at a minimum, the TFTP feature enabled on the Smart Proxy, and a
DHCP server available. While not required, the Smart Proxy can provide the DHCP service. In order for the installer to obtain its
kickstart template from the Smart Proxy, you should enable the templates feature.

If a TFTP proxy has the Templates feature as well, Foreman will automatically make the communication isolated. Your clients
need to talk to the Smart Proxy on port 67/udp and 68/udp for DHCP, 69/udp for TFTP, and 8000/tcp for Templates.

Consult the installer’s --help for the full range of provisioning options.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello nightly Documentation

nightly

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Simple Content Access

5.6 Content Hosts

5.7 Content Views

5.8 Disconnected

5.9 Docker Management

5.10 Email Notifications

5.11 Errata

5.12 Glossary

5.13 Content Credentials

5.14 Host Collections

5.15 Lifecycle Environments

5.16 Provisioning

5.17 Puppet Integration

5.18 Red Hat Content

5.19 SUSE Content

5.20 Remote Databases

5.21 Content View Import/Export

5.22 Source RPMs

5.23 Tracer

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Content
Katello can currently host two different types of content, RPMs and puppet modules. RPMs and Puppet Modules can be
synced from an external resource or can be uploaded directly.

The advantages to using Katello to mirror your local content are:

Reduce bandwith usage and increase download speed by having client machines pull updates from Katello
Provision hosts using local Repositories covered HERE TODO

Customize content locally, covered HERE TODO

Definitions
Repository - Collection of content (either RPM or puppet)
Product - Collection of Repositories, Content Hosts subscribe to a product
Library - A special pre-created Lifecycle Environment where Repositories are created and content is synced or uploaded
to. A Content Host can subscribe to library and receive content as soon as the content is synced or uploaded.

Creating a Product
From the web UI, navigate to:

Content > Products > New Product (top right)

Creating a Repository
From the web UI, navigate to:

Content > Products > Select desired product > Create Repository (right hand side)

Note the following options:

Publish via HTTP: allows access to the Repository without any restriction. Unless you desire to restrict access to your
content in this Repository, we recommended to leave this checked.
URL: If you are syncing from an external Repository (yum or puppet), this would be filled in. This can be changed, added,
or removed later. For example if you are wanting to create a mirror of EPEL, you would set this to
‘https://dl.fedoraproject.org/pub/epel/6/x86_64/’.

Syncing a Repository
From the web UI, navigate to:

Content > Products > Select desired product > Select the Repository > Sync Now

The progress will be displayed:

Syncing multiple repositories

To easily sync multiple repositories at once and track their progress, navigate to:

Content > Sync Status

From here you can expand the desired products, and select multiple repositories to sync.

Uploading RPM Content
Uploading RPM content directly is not currently supported. You will need to build a custom yum Repository. TODO Provide
instructions on creating a custom yum repo

Uploading Puppet Content
To upload puppet modules, first create a Repository with type puppet (similarly to creating a yum Repository above):

When creating this Repository the URL field can be left blank.

Puppet modules can be uploaded via the Web UI, navigate to:

Content > Repositories > Products > Select desired Product > Select desired Puppet Repository > Select file on the right

Subscribing a System to a Product for yum content
To read about registering systems and subscribing them to the Product click TODO.

Scheduling Repository Synchronization
Sync plans give you the ability to schedule Repository synchronization on a hourly, daily or weekly basis. Sync Plans are applied
to Products and thus all Repositories within a Product will be synchronized according to the products plan.

Creating a Sync Plan
If you would like to schedule certain repositories to sync on a hourly, daily or weekly basis, Sync Plans give you this capability.

To create a Sync Plan, navigate to:

Content > Sync Plans > click “New Sync Plan” on the upper right

The Start Date and Start Time fields are used as the day of the week/month and time of the day to run the re-occuring syncs.

For example a sync plan that starts on Sunday 2014-04-06 at 2:30 will occur every Sunday at 2:30 every week if it has a weekly
interval. If on a daily interval it would sync every day at 2:30.

Assigning a Sync Plan to a Product
Navigate to:

Content > Sync Plans > Select your Sync Plan > Products > Add

Then select the Products you want to add and click “Add Selected” in the upper right.

GPG Keys
To learn about securing your packages and Repositories with GPG Keys click here. TODO

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello nightly Documentation

nightly

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Simple Content Access

5.6 Content Hosts

5.7 Content Views

5.8 Disconnected

5.9 Docker Management

5.10 Email Notifications

5.11 Errata

5.12 Glossary

5.13 Content Credentials

5.14 Host Collections

5.15 Lifecycle Environments

5.16 Provisioning

5.17 Puppet Integration

5.18 Red Hat Content

5.19 SUSE Content

5.20 Remote Databases

5.21 Content View Import/Export

5.22 Source RPMs

5.23 Tracer

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Content Hosts
What is a Host?
A Host is a Foreman concept that represents a server/host/system/computer (whatever you want to call it). In addition to
holding facts about the system, it:

Stores which operating system the system should be running

Stores which puppet classes should be assigned
Stores which parameters apply to which puppet classes
Allows you to re-provision the machine

What are Content Hosts?
Content Hosts are the part of a host that manages Content and Subscription related tasks. As time goes on more and more of
this functionality will be moved to the Host object. A Host’s Content Host:

Stores which Products are assigned (i.e. which Repositories will the system pull content from)
Initiates package install/upgrade/removal
Determines which errata apply to a system
Initiates errata installation

How is a Content Host registered?
Subscription Manager is the client for Katello that handles registration.

Installing Subscription Manager
Depending on your Operating System, for:

RHEL, subscription-manager is installed by default
Fedora, subscription-manager is available from the Everything repo for its release: yum install subscription-manager
CentOS 7, subscription-manager is available in the ‘os’ repo for its release: yum install subscription-manager
CentOS 5/6, enable the upstream subscription-manager repo and then install subscription-manager (be sure to change
‘6’ to ‘5’ if you’re on EL5, as the version from 6 will not work):

Registering with Subscription Manager
First install the bootstrap rpm from your Katello server:

Then register:

Subscription manager will prompt for your username and password. You can also specify --username $USER --password
$PASS on the command line.

Registering to a Content View
To register to Content View “MyView” in a “Devel” Lifecycle Environment:

Registering without using a username and password
Activation Keys allow you to register and consume content without using a username and password. To create an Activation
Key see the Activation Key Guide

Once you have created an activation key, register with:

Actions with registered Content Hosts
To see the list of your Content Hosts, navigate to Hosts > Content Hosts

wget -O /etc/yum.repos.d/subscription-manager.repo http://copr.fedoraproject.org/coprs/dgoodwin/subscription-manager/repo/epel-6/
dgoodwin-subscription-manager-epel-6.repo

yum install subscription-manager -y

rpm -Uvh http://$KATELLO_HOSTNAME/pub/katello-ca-consumer-latest.noarch.rpm

subscription-manager register --org=Default_Organization --environment=Library

subscription-manager register --org=Default_Organization --environment=Devel/MyView

subscription-manager register --org=Default_Organization --activationkey=$KEY_NAME

Changing the Lifecycle Environment and Content View of a
Content Host:
Navigate to the Content Host Details page, Host > Content Hosts > Click the name of the desired Content Host

Look in the upper right corner for the “Content Host Content”:

Then select the new Lifecycle Environment you desire, select the new Content View you desire, and click save.

Assigning a Content Host to a Product
In order for a Content Host to receive package updates and access Repositories hosted on Katello, it needs to be subscribed to
a product.

Navigate to Hosts > Content Hosts > Select Content Host > Subscriptions > Click the “Add” tab

Check the checkbox under the Products you want to add and select “Add Selected” in the upper right.

To see existing attached Products, click the “List/Remove” tab. To remove a Product, select the checkbox under the desired
Product in this list and click “Remove Selected”.

Package Management
To perform package actions on a singleContent Host, navigate to: Hosts > Content Hosts > Select Content Host > Packages

From here you can:

See a list of installed packages
Perform a yum install/update/remove of a Package or Package Group
Update all packages (equivalent of running ‘yum update’)

View and Install Applicable Errata
If your synced Repositories contain Errata, you can use Katello’s Errata management to track and install Errata.

Navigate to: Hosts > Content Hosts > Select Content Host > Errata

To apply errata, search for the errata you want and select the checkbox beside each errata. Then click “Apply Selected” at the
top right.

The “Show From” filters what applicable errata to show:

Current Environment - Shows only Applicable Errata available in the Host’s Content View & Lifecycle Environment.
Previous Environment - Shows Applicable Errata that are available from the Host’s Content View but in the previous
Lifecycle Environment. Promoting the Content View Version from that previous Lifecycle Environment to the current
Lifecycle Environment for this Host would cause all Applicable Errata shown to then be available.
Library Synced Content - Shows Applicable Errata which have been synced to the Library. This shows you what is
applicable even when the Errata have not been published into a Content View. All applicable Errata are shown regardless
of availability to the Content Host.

Change Host Collection Asssignments
To change Host Collection assignments for a Content Host, navigate to: Hosts > Content Hosts > Select Content Host > Host
Collections

Bulk Actions
Katello provides the ability to perform actions on many Content Hosts at once such as:

Package installation/upgrade/removal
Listing and applying applicable errata
Assigning Host Collections
Changing Lifecycle Environment and Content View assignments

In order to use the bulk actions, perform whatever search you desire and select which Content Hosts you want to modify. If
you want to select all Content Hosts from a search result, click the ‘checkbox’ above the table:

This will select all Content Hosts on that page (only the ones that are visible). To select all that correspond to that search query,
notice a bar has now appeared:

Next select the ‘Bulk Actions’ button in the top right.

From here you can select the tab corresponding to any action you wish to perform.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello nightly Documentation

nightly

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Simple Content Access

5.6 Content Hosts

5.7 Content Views

5.8 Disconnected

5.9 Docker Management

5.10 Email Notifications

5.11 Errata

5.12 Glossary

5.13 Content Credentials

5.14 Host Collections

5.15 Lifecycle Environments

5.16 Provisioning

5.17 Puppet Integration

5.18 Red Hat Content

5.19 SUSE Content

5.20 Remote Databases

5.21 Content View Import/Export

5.22 Source RPMs

5.23 Tracer

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Content Views
What can a Content View be used for?

To stage content through environments (Dev, Test, Production).
To filter the contents of a repository (include a package or exclude certain errata, for example).
To have multiple snapshots of the same repository and/or puppet modules.

Definitions
Content View - snapshot of one or more repositories and/or puppet modules.
Composite Content View - a Content View that contains a collection of other Content Views.
Filter - provides finer grained control over content in a Content View. Can be used to include or exclude specific
packages, package groups, or errata.
Publishing - Content Views are ‘published’ in order to lock their contents in place. The content of the Content View is
cloned and all filters applied. Publishing creates a new version of the Content View.
Promoting - Content Views can be cloned to different Lifecycle Environments (Dev, Test, Production).

General Workflow
First create a product and repository in the library environment and populate the repository with content (by syncing it or
uploading content). A Content Host can now register directly to library and be attached to the content therein. Updates will be
available as soon as new content is synced or uploaded.

To utilize Content Views for filtering and snapshoting:

1. Create a Content View
2. Add the desired repository and/or puppet modules to the Content View
3. Optionally create one or more Filters to fine tune the content of the Content View.
4. Publish the Content View
5. Attach the Content Host to the Content View
6. Optionally promote the Content View to another environment

At this point the Content Host will no longer be getting content directly from Library, but from the Content View. Updates to
library will not affect this Content Host.

Note that all of the actions below can also done with hammer, the CLI tool, and examples are given at the end of each section.

Creating a Content View
To create a Content View using the web UI, navigate to:

Content > Content Views

Click the Create New View button on the top right of the screen.

From the CLI:

hammer content-view create \
 --organization="Default Organization" \
 --name="New Content View" \
 --description="This is my new content view."

Creating a Composite Content View
To create a Composite Content View using the web UI follow the above steps for Creating a Content View but check the
“Composite View?” checkbox.

From the CLI:

Adding Repositories
Adding a repository to a Content View means whenever a Content View is published, all of the content contained within the
repository at that time is included in the Content View. If the repository is synced after publishing the Content View, the
Content View will contain the state of the repository prior to syncing. A new version of the Content View must be published in
order for the new version to get the contents of the newly synced repository.

To add a repository using the web UI, navigate to:

Content > Content Views > Select the desired Content View > Content (within sub navigation) > Repositories

From the CLI, adding a repository:

Adding a Puppet Module
Adding a puppet module to a Content View means that whenever the Content View is published the puppet module is locked
to the version selected. If the “Use Latest” version is selected then the puppet module will be “frozen” at the latest version
available when the Content View is published. A new version of the Content View must be published in order for the new
version to get any updated puppet module.

To add a puppet module using the web UI, navigate to:

Content > Content Views > Select the desired Content View > Puppet Modules (within sub navigation)

hammer content-view create \
 --organization="Default Organization" \
 --name="New Composite Content View" \
 --description="This is my new composite content view." \
 --composite

hammer content-view add-repository \
 --organization="Default Organization"
 --name="New Content View" \
 --repository="CentOS 6.5"

From the CLI, first find the UUID of your puppet module from the list:

Then add the puppet module:

Adding Content Views to a Composite Content View
Adding a version of a Content View to a Composite Content View means whenever the Composite Content View is published,
all of the content contained within the specific version of that Content View is contained in the Composite Content View. If the
Content Views contained within the Composite Content View are updated (i.e. a new version is published) or if their content is

hammer puppet-module list \
 --organization="Default Organization" \
 --repository "Puppet Modules"

hammer content-view puppet-module add \
 --organization="Default Organization" \
 --content-view="New Content View" \
 --uuid=91cc9bb7-dbb3-4798-b50a-45173b763cbb

updated after publishing the Composite Content View, the Composite Content View will only contain the versions of the
Content View(s) prior to syncing. A new version of the Composite Content View must be published in order for it to get the
updated Content Views.

To add a Content View to a Composite Content View using the web UI, navigate to:

Content > Content Views > Select the desired Content View > Content (within sub navigation) > Repositories

Find the Content View ID of the specific version of the Content View to add:

From the CLI, add a Content View to a composite Content View:

Creating a filter
If only using Content Views as snapshots, Filters are unnecessary. If the desire is to filter what content make it into the view,
such as blacklisting a package by name or version, or blacklisting errata by date or type, Filters can help accomplish these
tasks.

To create a new Content View Filter using the web UI, navigate to:

Content > Content Views > Select the desired Content View > Content (within sub navigation) > Filters > New Filter

hammer content-view version list \
 --organization="Default Organization" \
 --content-view="New Content View"

hammer content-view update \
 --organization="Default Organization" \
 --content-view="New Composite Content View" \
 --component-ids=2

From the CLI, adding a Content View Filter:

From the CLI, adding a Content View Filter rule:

Selecting which Repositories to Filter
By default a Filter applies to all repositories (present and future) in the Content View. It’s possible to select which repositories
within the Content View apply to the filter. This is useful, for example, if the desire is to exclude errata from only certain
repositories in a view.

To select which repositories to Filter in the web UI, navigate to:

Content > Content Views > Select the desired Content View > Content (within sub navigation) > Filters > Select the desired Filter
> Affected repositories (within sub navigation)

hammer content-view filter create \
 --organization="Default Organization" \
 --content-view="New Content View" \
 --name="New Filter" \
 --inclusion=false \
 --type=rpm

hammer content-view filter rule create \
 --organization="Default Organization" \
 --content-view="New Content View" \
 --content-view-filter="New Filter" \
 --name="something-else" \
 --max-version="10.0.0" \
 --min-version="10.0.0"

From the CLI, adding a Content View Filter:

Publishing a Content View
Publishing a Content View produces a new version of the content view that is subsequently promoted to the Library lifecycle
environment. This newly published version of the content view is now available to any content host registered to Library.

To publish a Content View, in the web UI, navigate to:

Content > Content Views > Select the desired Content View > Publish New Version

hammer content-view filter update \
 --organization="Default Organization" \
 --name="New Filter" \
 --repository-ids=2,3,7

From the CLI:

Registering a Content Host
To register a Content Host that is not currently registered to the Content View, simply use subscription manager on the client
Content Host and run:

This would register the Content Host to the Library environment and the my_rhel_view Content View.

If the Content Host is already registered, from the UI:

Hosts > Content Hosts > Select the desired Content Host

hammer content-view publish \
 --organization="Default Organization" \
 --name="New Content View"

subscription-manager register --org=ACME_Corporation --environment=Library/my_rhel_view

From the CLI:

Promoting a Content View
Initially a Content View is published to Library as version 1. If there are Content Hosts in other environments that would like to
consume this Content View, a version of the content view will need to be promoted to those environments. For example, given
the Content View “New Content View”, version 1 of which has been promoted to the Dev environment. Any Content Hosts in
Dev attached to the Content View would remain at version 1 until a version 2 is both published and promoted to the Dev
environment.

To promote a Content View in the Web UI, navigate to:

Content > Content Views > Select the desired Content View > Versions (within sub navigation) > Click promote for desired
version

hammer content-host update \
 --organization="Default Organization" \
 --name="dhcp129-211.rdu.redhat.com" \
 --content-view="New Content View" \
 --lifecycle-environment="Library"

To promote a Content View in the CLI:

hammer content-view version promote \
 --organization="Default Organization" \
 --content-view="New Content View" \
 --to-lifecycle-environment="Test" \
 --version 1

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello nightly Documentation

nightly

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Simple Content Access

5.6 Content Hosts

5.7 Content Views

5.8 Disconnected

5.9 Docker Management

5.10 Email Notifications

5.11 Errata

5.12 Glossary

5.13 Content Credentials

5.14 Host Collections

5.15 Lifecycle Environments

5.16 Provisioning

5.17 Puppet Integration

5.18 Red Hat Content

5.19 SUSE Content

5.20 Remote Databases

5.21 Content View Import/Export

5.22 Source RPMs

5.23 Tracer

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Katello Inter-Server Sync
NOTE: This feature is intended to replace the ‘katello-disconnected’ script.

Intro
If you are working in an air-gapped network environment where some of your Katello servers do not have Internet
connectivity, you may be interested in using the Katello Inter-Server Sync (ISS) feature. This allows you to export repos,

including repos in content views, on your “upstream” Katello server, and then import said repos into your “downstream” server
that does not have connectivity. Individual repos can be exported, or all of the repos in a content view.

List of currently supported repo content types:

yum

Future releases will enable support for additional content types.

The diagram above shows an example scenario where a user wants to export all Yum content in a content view and then
import to another Katello server. The ISO file is burned to media and then walked across the air-gap in the network.

Detailed Operation
Exporting
The ISS feature allows users to move Yum content from one Katello server to another, in a way that is compatible with air-
gapped networks. Typically users will set up an upstream server that is connected to the Internet, and then create a content
view that contains Yum content that they would like to present to the downstream server (step 1).

Content is exported via either hammer repository export or hammer content-view version export (step 2). It is exported to the
location set in “pulp_export_destination” in the Settings page, under the Katello tab. This defaults to /var/lib/pulp/katello_export .
Please be aware that the location needs to be readable and writable by the foreman user. SELinux permissions also need to be

set on the export location with the type httpd_sys_rw_content_t as well as foreman user and group ownership.

You can select to either export as a plain set of directories, or as a set of ISO files. The “iso_size_mb” parameter sets how large
you would like each ISO file to be. It defaults to 4380 MB, which is the size of a single-side, single-layer DVD.

Importing
Importing (step 3) can be done in one of two ways. The first way is to make the export available via HTTP to the importing
Katello instance. Simply put the export in /var/www/html/pub/export , either via copy or symlink. After that, edit your CDN
location from the manifest import page to point to “http:///export/path/to/export" and the Red Hat Repos page will then work
as expected, using your exported data. Please be sure to use 'http' and not 'https' when altering the CDN url. Katello by default
only supports the CA certificate for `cdn.redhat.com`. This is a [known limitation]
(http://projects.theforeman.org/issues/16392) that will be addressed in a future version.

The second way is to perform a repository sync via hammer, specifiying the source location. Please see the hammer repository
sync command for more information. This method is the only way to import custom content, and is the only way to import
incremental content.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello nightly Documentation

nightly

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Simple Content Access

5.6 Content Hosts

5.7 Content Views

5.8 Disconnected

5.9 Docker Management

5.10 Email Notifications

5.11 Errata

5.12 Glossary

5.13 Content Credentials

5.14 Host Collections

5.15 Lifecycle Environments

5.16 Provisioning

5.17 Puppet Integration

5.18 Red Hat Content

5.19 SUSE Content

5.20 Remote Databases

5.21 Content View Import/Export

5.22 Source RPMs

5.23 Tracer

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Docker Management
Katello can be used to manage and deploy Docker content. Katello can retreive Docker content from a variety of sources such
as Docker hub, private Docker registries, the Red Hat CDN, and so forth. Docker content can then be published and promoted
via Content Views and then pulled or proivisioned to a server running Docker.

What is Docker?

Docker is a tool used to manage Linux containers. To read more about Docker, check out the official Docker site. Docker
repositories, which contain images and tags, can be retrieved, stored, managed, and deployed from Katello.

How to sync a Docker repository
The easiest way to get Docker content into Katello is to sync it in. You can either sync Docker content from the Red Hat CDN (if
you have subscriptions for the content) or from a registry such as Docker Hub.

Red Hat Docker Images
Content can be synced into Katello using a Red Hat manifest in much the same way as yum content. See our guide on how to
manage Red Hat content for more information.

Docker Hub/Docker Registry
To sync content from a Docker registry such as Docker Hub (which is the official Docker-run registry), simply start by creating a
new Repository.

On the new Repository screen, select “Docker” as the content type. Once you do that, you’ll be given two options: upstream
name and URL. The URL will be the registry URL; for Docker Hub, this would be https://registry.hub.docker.com .

For the upstream name, you want to use the fully qualified upstream name which also includes any namespace such as the
username. This can be just “busybox” if the Repository is an official Docker Hub Repository or it can be something like
“fedora/ssh” where “fedora” is the username/namespace.

Then click save and then sync the Repository as you normally would. Katello will fetch all the images and tags contained within
that Repository.

How to Upload Docker Images
In versions of Katello prior to 3.0, Docker images could be uploaded directly via either the UI or CLI. However, Katello 3.0 only
supports the Docker Registry v2 format, which is significantly different than the Docker Registry v1 format. The docker save
command outputs a Docker image in v1 format, which cannot be uploaded directly to a v2 repository.

As a workaround, you can create a local Docker registry like so:

Note the :2 above, which specifies a v2 registry. Push your changes to your newly created local registry then follow the

docker run -p 5030:5000 --name registry registry:2

instructions in the section above to sync this registry to Katello. This will ensure that your Docker content stays in Docker’s v2
registry format.

How to Publish and Promote Docker Content
Docker content can be published and promoted via Content Views much like yum or puppet content.

After creating a Content View, visit the Docker Content tab. Here you can select any Docker repositories you want to add to
your Content View. After you’ve added Docker Repositories to your view, you may proceed as normal. Visit the Content View
user guide for more information.

How to View and Pull Docker Content
To view Docker content contained with Katello, visit the Docker Tags page. This can be accessed under the Content menu at
the top of any page.

On the Docker Tags page, you can see a list of Docker Tags grouped by Repository in Katello. This shows you Tags grouped
across Content Views and Lifecycle Environments. Suppose I wanted to pull the latest Tag from my redis repository, I would
click the latest row for my redis repository.

I can see here that my redis Repository has been added to a published Content View called redisv. If I want to use the tag from
that Content View, I would just copy the Published At URL and then on my docker server I would run:

How to Provision Docker Content
See how to provision content in the documentation in the foreman-docker documentation. Provisioning content from Katello
works in much the same way.

First, proceed to the new Container page by accessing it from the Containers menu at the top. Then, select the Local Content
tab on the second step. This will allow you to select a Docker image from a published Katello repository which is in an
environment/content view/Smart Proxy. Then just proceed in the wizard as per the Foreman Docker instructions. When you
are finished, you should have a new container running from an image in Katello.

$ docker pull localhost:5000/default_organization-library-redisv-Tester-redis:latest
Pulling repository localhost:5000/default_organization-library-redisv-Tester-redis...

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello nightly Documentation

nightly

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Simple Content Access

5.6 Content Hosts

5.7 Content Views

5.8 Disconnected

5.9 Docker Management

5.10 Email Notifications

5.11 Errata

5.12 Glossary

5.13 Content Credentials

5.14 Host Collections

5.15 Lifecycle Environments

5.16 Provisioning

5.17 Puppet Integration

5.18 Red Hat Content

5.19 SUSE Content

5.20 Remote Databases

5.21 Content View Import/Export

5.22 Source RPMs

5.23 Tracer

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Email Notifications
Types of Email Notifications
In addition to the Email Notifications that Foreman provides:

Puppet run summary (Daily/Weekly/Monthly)
Puppet errors

Katello provides a few addition reports:

Katello Host Advisory (Daily/Weekly/Monthly) - A report of all of the Errata applicable to all readable Content Hosts
Katello Promote Errata - A report generated at Content View promotion time showing what Errata applicable to the
Content Hosts within that Content View.
Katello Sync Errata - A report generated after each Repository sync listing new Errata synced and how many Content
Hosts are applicable.

Configuring the Foreman/Katello to send emails:
The configuration of how the Foreman/Katello service sends email is located in Adminster > Settings > Email .

For more information see: Email Configuration

Opting in to the emails
By default a user will receive no email notifications. Each notification must be opted into.

To opt in for your own user, at the very top right of the web interface, hover over your Username, click “My Account” and then
click the “Mail Preferences” tab.

To opt in for other users, navigate to “Administer” > “Users” > Click the desired User > click the “Mail Preferences” tab.

Select which emails and frequency you would like the user to have and click “Submit”.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello nightly Documentation

nightly

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Simple Content Access

5.6 Content Hosts

5.7 Content Views

5.8 Disconnected

5.9 Docker Management

5.10 Email Notifications

5.11 Errata

5.12 Glossary

5.13 Content Credentials

5.14 Host Collections

5.15 Lifecycle Environments

5.16 Provisioning

5.17 Puppet Integration

5.18 Red Hat Content

5.19 SUSE Content

5.20 Remote Databases

5.21 Content View Import/Export

5.22 Source RPMs

5.23 Tracer

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Errata
Errata are updates between major releases. An Erratum is metadata about a group of packages that explains the importance
of the package updates. Errata may be released individually on an as-needed basis or aggregated as a minor release. There are
three main types of errata:

Enhancement: the new packages contain one or more added features
Bugfix: the new packages contain one or more bug fixes

Security: the new packages fix one or more security vulnerabilities

With regard to Content Hosts, Errata is divided into two distinct classifications depending on whether or not the Errata is
present in the Content Host’s Lifecycle Environment and Content View:

Applicable: the errata applies to one or more Content Hosts
Installable: the errata applies to one or more Content Hosts and is present in the Content Host’s Lifecycle Environment
and Content View

Definitions
Content Host
Content View
Lifecycle Environment

General Features
The following is a high-level summary of the Errata features:

View List of Errata
View Errata Details
View Affected Content Hosts
View Repositories Containing Errata
Applying Errata

View List of Errata
To view the list of Errata in the Organization:

navigate to: Content > Errata

View Errata Details
To view the details of an Errata:

navigate to: Content > Errata
Click on an Errata ID

View Affected Content Hosts
To view the Affected Content Hosts of an Errata:

navigate to: Content > Errata
Click on an Errata ID
Click on the Content Hosts Tab

Note the following option:

Checking the box limits the display of Content Hosts to those which already have the Errata available in their Lifecycle
Environment and Content View.

View Repositories Containing Errata
To view the Repositories Containing an Errata:

navigate to: Content > Errata
Click on an Errata ID
Click on the Repositories Tab

Note that you can filter by Lifecycle Environment and Content View.

Applying Errata
How Errata is applied to a Content Host(s) depends on whether the Errata is installable.

If the Errata is already installable then the Errata is applied to the Content Host(s).
If the Errata is not installable then an Incremental Update is generated. An Incremental Update creates a point release of
the Content View with the Errata included. The Errata can also be applied to the Content Host(s) as part of this process.

There are two ways to apply Errata:

A single Errata can be applied to one or more Content Hosts
Several Errata can be applied to one or more Content Hosts via a bulk operation

Applying a Single Errata
To apply a single Errata:

Navigate to: Content > Errata
Click on an Errata ID
Click on the Content Host tab
Select the desired Content Hosts
Click “Apply to Hosts”
Confirm the action

Applying Several Errata
To apply several Errata:

Navigate to: Content > Errata
Select the desired Errata
Click “Apply Errata”
Select the intended Content Hosts
Click “Next”
Confirm the action

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.4 Documentation

3.4

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

2.4 Puppet

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 GPG Keys

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

6. Troubleshooting

7. Api Documentation

Glossary
The following terms are used throughout this document, and are important for the users understanding of Katello.

Activation KeyActivation Key

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

A registration token which can be used in a kickstart file to control actions at registration. These are similar to Activation Keys
in Spacewalk, but they provide a subset of features because after registration, Puppet takes control of package and
configuration management.
Application Lifecycle EnvironmentApplication Lifecycle Environment
Steps in a promotion path through the Software (Development) Life Cycle (SDLC). Content (packages, puppet modules) can be
moved through lifecycle environments via content view publishing/promotion. Traditionally these environments are things like
Development -> Test -> Production. Channel cloning was used to implement this concept for this in Spacewalk.
AttachAttach
Associating a Subscription to a Host which provides access to RPM content.
CapsuleCapsule
An additional “server” that can be used in a Katello deployment to facilitate content federation and distribution in addition to
other localized services (Puppet master, DHCP, DNS, TFTP, and more).
Change SetChange Set
Set of packages and puppet modules which are promoted between Application Lifecycle Environments. Katello records the
progress of changesets as they promoted. Katello also provides audit capabilities to review how environments have changed
over time.
Compute ProfileCompute Profile
Default attributes for new virtual machines on a compute resource.
Compute ResourceCompute Resource
A virtual fabric, or cloud infrastructure, where hosts can be deployed by Katello. Examples include RHEV-M, OpenStack, EC2,
and VMWare.
ContentContent
Software packages (RPMS), Package Groups, Errata, and Puppet modules. These are synced into the Library and then
promoted into Lifecycle Environments via Content Views in order to be used/consumed by Hosts.
Content Delivery Network (CDN)Content Delivery Network (CDN)
The mechanism to deliver Red Hat content in a geographically co-located fashion. For example, content which is synced by a
Katello in Europe will pull content from a source in Europe.
Content ViewContent View
A definition of content that combines products, packages, errata and Puppet modules, with capabilities for intelligent filtering
and snapshotting. Content Views are a refinement of the combination of channels and cloning from Spacewalk.
External Node ClassifierExternal Node Classifier
A Puppet construct that provides additional data for a Puppet master to be used for configuring Hosts. Foreman acts as an
External Node Classifier to Puppet Masters in a Satellite deployment.
FacterFacter
A program that provides information (facts) about the system on which it is run (eg: total memory, operating system version,
architecture, etc.) Facter facts can be used in Puppet modules in order to enable specific configurations based on Host data.
HammerHammer
The command line tool for Katello. Hammer can be used as a standard cli (and used in scripts) and can also be used as a shell
in the same way that spacecmd, virsh and others work.
HostHost
A system, either physical or virtual, which is managed by Katello.
Host GroupHost Group
A template for how a Host should be built. This includes the content view (which defines the available RPMs and Puppet
modules), and the Puppet classes to apply (which determines the ultimate software and configuration).
LocationLocation
A collection of default settings which represent a physical place. These can be nested so that a user can set up defaults, for
example, for Europe, which are refined by Tel Aviv, which are refined by DataCenter East, and then finally by Rack 22.
LibraryLibrary
The Library is the single origin of all content which can be used. If you are an Information Technology Infrastructure Library
(ITIL) shop, it is your definitive media library.
ManifestManifest
The means of transferring subscriptions from a Subscription Provider (such as the Red Hat Customer portal) to Katello. This is
similar in function to certificates used with Spacewalk.
OrganizationOrganization
A tenant in Katello. Organizations, or orgs, are isolated collections of hosts, content and other functionality within a Katello
deployment.
PermissionPermission
The ability to perform an action.
ProductProduct
A collection of content repositories.
PromotePromote
The act of moving content from one Application Lifecycle Environment to another.
Provisioning TemplateProvisioning Template
User defined templates for Kickstarts, snippets and other provisioning actions. These provide similar functionality to Kickstart
Profiles and Snippets in Katello.

Puppet AgentPuppet Agent
An agent that runs on a Host that applies configuration changes to that Host.
Puppet ClassPuppet Class
A Puppet Class is re-usable named block of puppet manifest, similar to a class in an object-oriented programming language.
Puppet classes must be included/instantiated in order to use their functionality. Puppet Classes can be parameterized - they
can take parameters when they are included/instantiated and those parameters may be used by the underlying manifest to
affect the ultimate configuration.
Puppet ManifestPuppet Manifest
A Manifest is a simple set of Puppet instructions. Manifests typically have the .pp extension. A manifest is much like a
procedure in programming terms.
Puppet MasterPuppet Master
A Capsule component that provides Puppet manifests to Hosts for execution by the Puppet Agent.
Puppet ModulePuppet Module
A Puppet Module is a set of Puppet manifests/classes, template files, tests and other components packaged together in a
specific directory format. Puppet Modules are typically associated with specific software (eg: NTP, Apache, etc) and contain
various classes used to assist in the installation and configuration of that software. Puppet Labs maintains a repository of
official and user-contributed modules called the Puppet Forge.
Pulp NodePulp Node
A Capsule component that mirrors content. This is similar to the Spacewalk Proxy in Spacewalk. The main difference is that
content can be pre-staged on the Pulp Node before it is used by a Host.
RepositoryRepository
A collection of content (yum repository, puppet repository).
RoleRole
A collection of permissions that are applied to a set of resources (such as Hosts).
Smart ProxySmart Proxy
A Capsule component that can integrate with external services, such as DNS or DHCP.
Smart VariableSmart Variable
A configuration value that controls how a Puppet Class behaves. This can be set on a Host, a Host Group, an Organization, or a
Location.
Standard Operating Environment (SOE)Standard Operating Environment (SOE)
A controlled version of the operating system on which applications are deployed.
SubscriptionSubscription
The right to receive content and service from Red Hat. This is purchased by customers.
SyncingSyncing
Mirroring content from external resources into an organization’s Library.
Sync PlansSync Plans
Scheduled execution of syncing content.
UsergroupUsergroup
A collection of roles which can be assigned to a collection of users. This is similar to the Role in Spacewalk.
UserUser
A human who works in Katello. Authentication and authorization can be done via built in logic, or using external LDAP or
kerberos resources.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello nightly Documentation

nightly

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Simple Content Access

5.6 Content Hosts

5.7 Content Views

5.8 Disconnected

5.9 Docker Management

5.10 Email Notifications

5.11 Errata

5.12 Glossary

5.13 Content Credentials

5.14 Host Collections

5.15 Lifecycle Environments

5.16 Provisioning

5.17 Puppet Integration

5.18 Red Hat Content

5.19 SUSE Content

5.20 Remote Databases

5.21 Content View Import/Export

5.22 Source RPMs

5.23 Tracer

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Managing Content Hosts using GPG Keys
GPG Keys provide a way to verify the integrity of packages found within a Repository and/or Product. Once one or more GPG
Keys have been created, they can be associated with a Product or Repository during creation or by editing an existing Product
or Repository.

For more information on GPG Keys see The GNU Privacy Guard.

General Features
The following is a high-level summary of GPG Key features:

Create a GPG Key
View Associated Products
View Associated Repositories
Assocate GPG Key with Product

Create a GPG Key
To create a new GPG Key:

navigate to: Content > GPG Keys
click New GPG KeyNew GPG Key

Note that you may either upload your GPG Key or simply paste in the contents.

View Associated Products
To view all Products that have been assigned a GPG Key:

navigate to: Content > GPG Keys
select the desired GPG Key from the list
click ProductsProducts

View Associated Repositories
To view all Repositories that have been assigned a GPG Key:

navigate to: Content > GPG Keys
select the desired GPG Key from the list
click RepositoriesRepositories

Associate GPG Key with Product
To add a GPG to a Product:

Note that adding a GPG Key to a Product adds the GPG Key to all current and future repositories unless a repository already
has a GPG Key assigned. This can also be overriden by assignming a GPG Key to an individual repository afterward as well.

navigate to: Content > Products
select the desired Product from the list
click DetailsDetails
click the edit button on the GPG Key field
select the desired GPG Key

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello nightly Documentation

nightly

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Simple Content Access

5.6 Content Hosts

5.7 Content Views

5.8 Disconnected

5.9 Docker Management

5.10 Email Notifications

5.11 Errata

5.12 Glossary

5.13 Content Credentials

5.14 Host Collections

5.15 Lifecycle Environments

5.16 Provisioning

5.17 Puppet Integration

5.18 Red Hat Content

5.19 SUSE Content

5.20 Remote Databases

5.21 Content View Import/Export

5.22 Source RPMs

5.23 Tracer

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Managing Content Hosts using Host Collections
Host Collections provide a mechanism to statically group multiple Content Hosts. This enables administrators to group Content
Hosts based on the needs of their organization. For example, Content Hosts could be grouped by function, department or
business unit.

Once a Host Collection is created, it can be used to perform various actions on the Content Hosts contained within it. This
includes actions such as the following:

Package installation, removal and update
Errata installation
Changing of assigned Lifecycle Environment or Content View

Definitions
Content Host

General Features
The following is a high-level summary of the Host Collection features:

Create a Host Collection
Add Content Hosts to a Host Collection
Copy a Host Collection
Perform actions on a Host Collection

Create a Host Collection
To create a new collection,

navigate to: Hosts > Host Collections
click New Host CollectionNew Host Collection

Note the following option:

Content Host Limit: This option will control how many Content Hosts are allowed to be added to the collection.

Add Content Hosts to a Host Collection
To add Content Hosts to a collection:

navigate to: Hosts > Host Collections
select the desired collection from the list
click Content HostsContent Hosts
click AddAdd

select the Content Hosts you would like to add
click Add SelectedAdd Selected

Copy a Host Collection
Copying a Host Collection allows a user to quickly create a new collection that is a copy of an existing one.

To copy a Host Collection:

navigate to: Hosts > Host Collections
select the desired collection from the list
click Copy CollectionCopy Collection
enter a name for the new collection
click CreateCreate

Perform Actions on a Host Collection
To perform an action on Content Hosts within a collection:

navigate to: Hosts > Host Collections
select the desired collection from the list
click Collection ActionsCollection Actions
click on the action that you would like to perform

Note: clicking on an action will take the user to the appropriate Content Hosts Bulk Actions page, where all Content Hosts
associated with the collection have been selected. Click here, for more information on performing Content Host Bulk Actions

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello nightly Documentation

nightly

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Simple Content Access

5.6 Content Hosts

5.7 Content Views

5.8 Disconnected

5.9 Docker Management

5.10 Email Notifications

5.11 Errata

5.12 Glossary

5.13 Content Credentials

5.14 Host Collections

5.15 Lifecycle Environments

5.16 Provisioning

5.17 Puppet Integration

5.18 Red Hat Content

5.19 SUSE Content

5.20 Remote Databases

5.21 Content View Import/Export

5.22 Source RPMs

5.23 Tracer

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Lifecycle Environments
What can a Lifecycle Environments be used for?

Hold content view versions.
To manage the lifecycle of Content Hosts.
Establish workflow containers and promote content views.

Definitions
Lifecycle Environment - containers for content view versions which are consumed by content hosts.
Library - a special kind of Lifecycle Environment that does not have a parent. The library serves as the main container for
synced content such as products, puppet modules, and published content views. Every organization has a library.
Subsequent environments are derived from the library. The first node of an environment is the Library, all future
environments are derived from the library and follow the library in promotion order.
Lifecycle Environment Path - Sequence of lifecycle environments that form the content promotion order.

General Workflow
First create a lifecycle environment connected to the library life cycle environment and promote content views to the new
lifecycle environment. A Content Host can now register directly to the promoted content view in the promoted environment or
library therein. Updates will be available as soon as new content is synced and promoted.

Viewing the list of lifecycle environments
From the web UI, navigate to:

Content -> Lifecycle Environments

Creating a lifecycle environment
Click on the + next to the Library or the prior environment to add a new path

Creating a lifecycle environment path
Click on the New Environment Path

View/Updating environment name
Click on the name of the environment.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello nightly Documentation

nightly

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Simple Content Access

5.6 Content Hosts

5.7 Content Views

5.8 Disconnected

5.9 Docker Management

5.10 Email Notifications

5.11 Errata

5.12 Glossary

5.13 Content Credentials

5.14 Host Collections

5.15 Lifecycle Environments

5.16 Provisioning

5.17 Puppet Integration

5.18 Red Hat Content

5.19 SUSE Content

5.20 Remote Databases

5.21 Content View Import/Export

5.22 Source RPMs

5.23 Tracer

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Provisioning
See the Foreman manual for general information on configuring provisioning.

Templates
Katello ships a number of templates in addition to the standard Foreman ones. When using these templates, if a host has a
Host group with an Activation Key, it will register as a Content Host automatically.

Katello Kickstart DefaultKatello Kickstart Default - Kickstart template for Fedora, CentOS, RHEL, and other Red Hat-compatible operating
systems.
Katello Kickstart Default FinishKatello Kickstart Default Finish - image-based provisioning
Katello Kickstart Default User DataKatello Kickstart Default User Data - cloud-init template for EC2 and OpenStack
subscription_manager_registrationsubscription_manager_registration - Snippet for registering a host for content

To customize any of the above templates, simply clone them and add your changes.

When you synchronize a repository with a distribution such as Fedora or CentOS, Katello will automatically create the
operating system and assign these default templates. You may change the defaults by going to Administer > Settings, and
selecting the Katello tab.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello nightly Documentation

nightly

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Simple Content Access

5.6 Content Hosts

5.7 Content Views

5.8 Disconnected

5.9 Docker Management

5.10 Email Notifications

5.11 Errata

5.12 Glossary

5.13 Content Credentials

5.14 Host Collections

5.15 Lifecycle Environments

5.16 Provisioning

5.17 Puppet Integration

5.18 Red Hat Content

5.19 SUSE Content

5.20 Remote Databases

5.21 Content View Import/Export

5.22 Source RPMs

5.23 Tracer

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Managing Puppet Content
Importing the Puppet Forge
The Puppet Forge is a collection of puppet modules written by the community which can be used to manage hosts in Katello.
These modules can be used in content views as described in the content views guide in order to configure the running hosts.

To import the puppet forge navigate to

Content > Products

Click on the +New Product button.

Once the product is created, select the product and click the Create Repository button. Fill out the repostitory as shown:

This can be done via the CLI:

The repository can now be synced.

Importing Puppet Modules from Git
In order to allow users to import puppet modules from Git repositories, Katello comes with a tool called ‘pulp-puppet-module-
builder’ from the pulp-puppet-tools RPM. This utility will be available on the Katello server but it can also be installed on
another machine if desired. By running the ‘pulp-puppet-module-builder’ against a Git repository, it will checkout the
repository, build all of the modules, and publish them in a structure Katello can synchronize.

The most common method is to run the utility on the Katello server itself and publish to a local file system directory and sync
against that directory.

This will checkout the ‘develop’ branch of the Git repository located at ‘git@mygitserver.com:mymodules.git’ and publish them
to the /modules directory. If you have SELinux enabled, in order to sync from the file system, you’ll need to apply a label to the
files in order for the system to access them. Two options are httpd_sys_r_content_t or pulp_tmp_t. Note: if you choose
httpd_sys_r_content_t then the webserver can also read the files so that may or may not be good. One way to apply these
labels would be to use the chcon command.

Next, from within Katello, simply set the url on your Puppet Repository to ‘file://modules’. You can now sync the Repository just

hammer product create
 --organization "Default Organization"
 --name Puppet

hammer repository create
 --organization "Default Organization"
 --product Puppet
 --name forge
 --content-type puppet
 --url "https://forge.puppetlabs.com/"

mkdir /modules
chmod 755 /modules
pulp-puppet-module-builder --output-dir=/modules --url=git@mygitserver.com:mymodules.git --branch=develop

like any other Repository.

If you are running this on a remote machine, you will need to publish the containing to folder to a location accessible by HTTP
or HTTPS.

Then in Katello, simply enter ‘http://HOSTNAME/modules/’ for the Repository url and sync it like you normally would.

mkdir /var/www/html/modules/
chmod 755 /var/www/html/modules/
pulp-puppet-module-builder --output-dir=/var/www/html/modules --url=git@mygitserver.com:mymodules.git --branch=develop

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello nightly Documentation

nightly

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Simple Content Access

5.6 Content Hosts

5.7 Content Views

5.8 Disconnected

5.9 Docker Management

5.10 Email Notifications

5.11 Errata

5.12 Glossary

5.13 Content Credentials

5.14 Host Collections

5.15 Lifecycle Environments

5.16 Provisioning

5.17 Puppet Integration

5.18 Red Hat Content

5.19 SUSE Content

5.20 Remote Databases

5.21 Content View Import/Export

5.22 Source RPMs

5.23 Tracer

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Red Hat Content
Katello can be used to manage content associated with Red Hat products based upon available subscriptions. This includes
content such as RPMs, package groups, errata and distributions.

Definitions
Subscription Manifest - An archive file containing certificates and data that represent the subscriptions that are available.

A subscription manifest is created and downloaded from the Red Hat Customer Portal.
Repository - Collection of content (either rpm or puppet).
Product - Collection of repositories (content hosts attach to a product).
Library - The initial lifecycle environment where repositories are created. Content that is synced or uploaded lands in the
library.

General Workflow
The following is a high-level summary of the workflow:

Create a subscription manifest using the Red Hat Customer Portal
Import the subscription manifest
Enable Red Hat repositories
Synchronize repositories
Schedule repository synchronization
Attach a content host to a product for Red Hat content

Create a Subscription Manifest Using the Red Hat
Customer Portal
If you are a Red Hat customer, you should have access to the Red Hat Customer Portal to create and download a subscription
manifest. Once created, the manifest can be imported in to a Katello Organization.

To access the Red Hat Customer Portal, click here

For details on how to create a subscription manifest, click here

Import the Subscription Manifest
Importing a subscription manifest will allow for Red Hat content associated with purchased subscriptions to be enabled and
synchronized to Katello.

To import a manifest,

navigate to: Content > Red Hat Subscriptions
click Choose FileChoose File
navigate to the file containing the manifest (e.g. manifest.zip)
click OpenOpen
click UploadUpload

Enable Red Hat Repositories
Once a subscription manifest is imported, access is available to potentially hundreds of Red Hat Repositories (e.g. Red Hat
Enterprise Linux Server, Red Hat Enterprise Virtualization…etc). This process allows you to select only those that you are
interested in for your enterprise.

To enable Red Hat repositories,

navigate to: Content > Red Hat Repositories
select the content type: RPMs, Source RPMs, Debug RPMs, Beta, ISOs or Other
select one or more Red Hat products (e.g. Red Hat Enterprise Linux Server)
select one or more Repsitory Sets (e.g. Red Hat Enterprise Linux 6 Server (RPMs))
select one or more Repositories (e.g. Red Hat Enterprise Linux 6 Server RPMs x86_64 6Server)

Note:

When enabling a RHEL repository, Red Hat recommends selecting the Server repo (e.g. 6Server, 5Server) versus a
specific release (e.g. 6.2). When a specific release is necessary, the preferred way is to create a Content View with filters
that narrow the content to the desired version (e.g. 6.2)
If you plan to provision content hosts, be sure to enable both the RPM and Kickstart repositories.

Synchronize Repositories
Synchronizing a repository will retrieve all associated content and mirror the content in the Katello Library lifecycle
environment.

To sync multiple repositories as well as track their progress,

navigate to: Content > Sync Status
expand the desired products
select the repositories to sync
click Synchronize NowSynchronize Now

Schedule Repository Synchronization
Creating a Sync Plan
Sync plans provide the ability to schedule repository synchronization on a daily, weekly or a monthly basis. Sync plans can be
applied individually or to a set of repositories.

To create a Sync Plan:

navigate to: Content > Sync Plans
click New Sync PlanNew Sync Plan on the upper right

Note the following options:

Start Date and Start Time: specify the day of the week/month and time of the day to run the recurring syncs. For
example, a sync plan that starts on Sunday 2014-04-06 at 2:30 will occur every Sunday at 2:30 every week if it has a
weekly interval. If on a monthly interval it would sync every month on the 6th day at 2:30.

Assigning a Sync Plan to a Red Hat Product
To assign a sync plan to a product,

navigate to Content > Sync Plans
select your Sync Plan
click ProductsProducts
click AddAdd
select the products that you want to add
click Add SelectedAdd Selected on the upper right

Attach a Content Host to a Product for Red Hat Content
To read about registering a content host and subscribing it to a product, click TODO.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.4 Documentation

3.4

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

2.4 Puppet

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 GPG Keys

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

6. Troubleshooting

7. Api Documentation

Katello Troubleshooting
For general support information, see here.

Table of Contents

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

Sub-service Status
Tasks
Debug Certificate
FAQ

Sub-services status
Katello uses a set of back-end services to perform the actual job. The status of these services can negatively influence the whole
system and it’s one of the first things to check when some errors occur.

The status of back-end services can be found either from the Web UI on the /about page:

Alternatively, the hammer ping command can be used to get this information.

katello-service tool can be used to restart Katello related services. See man katello-service for more details.

Tasks
Katello uses Foreman Tasks for orchestration between the underlying services (local database, Pulp, Candlepin…). The tasks are
modeled as Dynflow processes. When something goes wrong (and there might be many reasons for this happening), Dynflow gives
us the tools to recover from these errors to get to the consistent state.

Health checking
There are two properties used for identifying issues with a task:

statestate - what phase of execution is the task in, possible values are:
planningplanning - the planning phase of the task is performed: the operations performed in this phase shouldn’t modify
anything outside Katello’s database. The execution of this phase happens in the web-process thread and usually should
not take more than few seconds
plannedplanned - the planning phase finished and the task is waiting for the executor process (foreman-tasks service) to pick it
up
runningrunning - the executor is performing the orchestration action, modifying the state of external services to converge to
the final state
pausedpaused - something went wrong during running the task and it’s waiting for the resolution (further details below)
stoppedstopped - the execution of the task finished (the success is determined by the resultresult value)
resultresult - how the task ended up (or is going to end up if we already know it)
pendingpending - task is in the process of executing
successsuccess - no errors occurred during the execution
errorerror - unresolved errors occurred during the execution
warningwarning - there were errors during the execution, but they did not prevent the task from finishing or were skipped
manually (further details below).

To see all the tasks in the system, one can go to /foreman_tasks/tasks page. To see all the tasks that failed, one can search on
result = error :

Failed tasks include those in the ‘stopped’ or ‘paused’ state. The stopped tasks are already considered as resolved, there is no risk
of inconsistency. The tasks in the ‘stopped’ state and the ‘error’ result are usually those failed during the planning phase (usually
locking error or bad input data).

To see all the tasks requiring further assistance, filter on state = paused :

Dealing with paused task
Once the paused task is identified, one can investigate the problem causing the errors:

The resolution of the problem is dependent on the error details. The task may be resolvable by resuming the task: make sure the
sub-services are running (see Sub-services status for more details) and then click ‘Resume’ within the web interface.

If this still doesn’t help, one possible step is going to a Dynflow console (the button from task details takes you there):

Caution: Dynflow console is considered a low-level tool and should be used very carefully, ideally discussing other options beforeCaution: Dynflow console is considered a low-level tool and should be used very carefully, ideally discussing other options before
using its featuresusing its features

If the failed task was taken care of by other means (performing the failed steps manually) or it was identified as not critical to the
whole task, one can skip the failed step and resume the task to continue. These tasks end up with warning result at the end, to
indicate there was some difficulty during the run.

Dealing with Long Running Tasks
In came cases, there might be an issue with sub-services that make it appear as if the task is running for too long without any
obvious evidence that something is occurring withing the task.

The first place to look in this case is filtering the tasks on state = running and looking at Running Steps in the task details:

In this case, the "start_time" => nil indicates that the task was not picked up by Pulp, which usually means some issues with running
the Pulp workers. See (see Sub-services status for more details).

One can also go to the Dynflow console for even more details: the suspended state means that the step is waiting for the external
task to finish - the suspended state itself doesn’t have to indicate any error:

If you’re sure the underlying services are running fine, depending on the type of task, there might be a possibility to cancel the
running step and possibly following dealing with paused tasks instead.

Locking
Foreman tasks provides a locking mechanism which is important to prevent the possibility of operations colliding that are being
performed concurrently on the same resource (such as synchronizing and deleting a repository at the same time).

When trying to run an operation on a resource that another task is already running, one can get Required lock is already taken by
other running tasks. :

A locked resource is one where another task that is related to the same resource is already running. Thus, the task being
attempted will result in that task being tried in running or paused statein running or paused state. This means that the error is triggered also in cases, where
there is a task with unresolved failure (see dealing with paused tasks for more details).

In rare cases, it might be hard to get into the stopped state. There is a possibility to unlock the resource in the running / paused
task. This will switch the task into stopped state, freeing the resources for other tasks. Caution: unlocking allows running otherCaution: unlocking allows running other
tasks to run on potentially inconsistent data, which might lead into further errorstasks to run on potentially inconsistent data, which might lead into further errors. It’s still possible to go to the Dynflow console and
resume the tasks, even after using the unlock feature. There are two unlock-related buttons: Unlock and Force Unlock . The only
difference between these two is the second one is allowed even when the task is in running state, and therefore is potentially even
more dangerous than the Unlock button. See dealing with tasks running too long before attempting to use the Force Unlock
option.

Debug Certificate
Debug certificates (also called Ueber Certificates) can be used to unlock all the content for a given Organization. These are meant to
be used by sysadmins who are debugging issues with the Katello install.

Generating a Debug Certificate
To generate a debug certificate for a given Organization from the UI, navigate to the organizations page and click on the
organization for which you want a debug certificate. Click on the button to generate and download the certificate as highlighted
below:

To generate a debug certificate using the API see the API docs located on your server running at /apidoc .

In either case, you will get the Private Key and Certificate returned to you in a format such as :

Using Firefox to browse content
If you wish to use the certificate to browse content via Firefox, do the following:

1. Copy the contents of the above file from -----BEGIN RSA PRIVATE KEY----- to -----END RSA PRIVATE KEY----- inclusive to
a file called key.pem

2. Copy the contents of the above file from -----BEGIN CERTIFICATE----- to -----END CERTIFICATE----- inclusive to a file
called cert.pem

3. Run the following command to create a pkcs12 file:

4. Provide a password when prompted.
5. Using the preferences tab, import the resulting pfx file into your browser (Edit->Preferences->Advanced Tab -> View

Certificates -> Import)
6. Point your browser at http://[FQDN]/pulp/repos/[ORG_NAME]

To use curl to access the repository, you can provide –cert and –key options. Provided the cert is in ~/cert.pem and key in
~/key.cert , the following command will let you access any repository data in the organization. To check the access to a repository,

checking the availability of repodata/repomd.xml is usually a good idea (make sure key.pem and cert.pem are ‘'’absolute paths’’’
otherwise it silently fails):

Frequently Asked Questions
Can I use pulp-admin with Katello?

Key: -----BEGIN RSA PRIVATE KEY-----
<<<<DER ENCODED TEXT>>>>
-----END RSA PRIVATE KEY-----

Cert: -----BEGIN CERTIFICATE-----
<<<<DER ENCODED TEXT>>>>
-----END CERTIFICATE-----

openssl pkcs12 -keypbe PBE-SHA1-3DES -certpbe PBE-SHA1-3DES -export -in cert.pem -inkey key.pem -out [NAME].pfx -name [N
AME]

curl -k --cert ~/cert.pem --key ~/key.pem https://katello.example.com/pulp/repos/test/Dev/custom/zoo/base-two/repodata/repomd.xml

We do not encourage the use of pulp-admin because it has the potential to get data out of sync. However, pulp-admin can be
useful when troubleshooting Katello.

1. Install needed packages

2. Edit /etc/pulp/admin/admin.conf
3. Uncomment the ‘host:’ line and add your server’s hostname:

4. Run grep default_password /etc/pulp/server.conf to lookup the admin password

5. Use pulp-admin by specifying the admin username and password:

Using pulp-admin without password
Using the ‘pulp-admin login’ command does not function and is not supported with Katello in an attempt to limit access to the
certificate authoriity generated at installation time.

Katello 3.0 generates a client cert at installation time which allows usage of pulp-admin without specifying the username and
password. To use this:

1. mkdir ~/.pulp/
2. Copy the public client cert and private key to a file together:

3. Run pulp-admin without username and password:

How can I sync a repository like Katello does directly from the console?
Sometimes you want to debug why a synchronization of a repository from Katello is failing and rather than dig through log files and
error messages it can often be easier to try to sync the repo with the ‘‘grinder’’ tool which is what Katello uses to download
repositories. The tool can be ran from a terminal on your Katello server:

You now have a directory called sync-test off of your current working directory:

yum install -y pulp-admin-client pulp-rpm-admin-extensions

host: katello-hostname.example.com

sudo grep default_password /etc/pulp/server.conf
default_password: default password for admin when it is first created; this
default_password: rGox3G9QhfCRD8fTsNR7FxqdgbvfJfSJ

pulp-admin -u admin -p rGox3G9QhfCRD8fTsNR7FxqdgbvfJfSJ repo list

sudo cat /etc/pki/katello/certs/pulp-client.crt /etc/pki/katello/private/pulp-client.key > ~/.pulp/user-cert.pem

pulp-admin repo list

$ grinder yum --label=sync-test --url=https://fedorapeople.org/groups/katello/releases/yum/1.0/RHEL/6Server/x86_64/
grinder.RepoFetch: INFO fetchYumRepo() repo_label = sync-test, repo_url =
https://fedorapeople.org/groups/katello/releases/yum/1.0/RHEL/6Server/x86_64/, basepath = ./, verify_options = {}
grinder.RepoFetch: INFO sync-test, https://fedorapeople.org/groups/katello/releases/yum/1.0/RHEL/6Server/x86_64/,
Calling RepoFetch with: cacert=<None>, clicert=<None>, clikey=<None>, proxy_url=<None>, proxy_port=<3128>, proxy_user=<Non
e>,
proxy_pass=<NOT_LOGGED>, sslverify=<1>, max_speed=<None>, verify_options=<{}>, filter=<None>
....
grinder.ParallelFetch: INFO 5 threads are active. 8 items left to be fetched
grinder.ParallelFetch: INFO 4 threads are active. 4 items left to be fetched
grinder.ParallelFetch: INFO WorkerThread deleting ActiveObject
grinder.ParallelFetch: INFO Thread ending
grinder.ParallelFetch: INFO 3 threads are active. 3 items left to be fetched
grinder.ParallelFetch: INFO WorkerThread deleting ActiveObject
grinder.ParallelFetch: INFO Thread ending

$ ls sync-test/
converge-ui-devel-0.8.3-1.el6.noarch.rpm
elasticsearch-0.18.4-13.el6.noarch.rpm
katello-1.0.6-1.el6.noarch.rpm
katello-agent-1.0.6-1.el6.noarch.rpm
katello-all-1.0.6-1.el6.noarch.rpm
katello-certs-tools-1.1.7-1.el6.noarch.rpm
lucene3-contrib-3.4.0-2.el6.noarch.rpm
repodata
rubygem-actionmailer-3.0.10-3.el6.noarch.rpm
...

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Foreman v2Foreman v2

Foreman API v2 is currently the default API version.

Resources

Activation keys
Resource Description

GET /katello/api/activation_keys List activation keys

GET
/katello/api/environments/:environment_id/activation_keys

GET
/katello/api/organizations/:organization_id/activation_keys

POST /katello/api/activation_keys Create an activation key

PUT /katello/api/activation_keys/:id Update an activation key

DELETE /katello/api/activation_keys/:id Destroy an activation key

GET /katello/api/activation_keys/:id Show an activation key

POST /katello/api/activation_keys/:id/copy Copy an activation key

GET
/katello/api/activation_keys/:id/host_collections/available

List host collections the activation key does not belong to

GET /katello/api/activation_keys/:id/releases Show release versions available for an activation key

GET /katello/api/activation_keys/:id/product_content Show content available for an activation key

POST /katello/api/activation_keys/:id/host_collections

PUT /katello/api/activation_keys/:id/host_collections

PUT /katello/api/activation_keys/:id/add_subscriptions Attach a subscription

PUT /katello/api/activation_keys/:id/remove_subscriptions Unattach a subscription

PUT /katello/api/activation_keys/:id/content_override Override content for activation_key

Architectures
Resource Description

GET /api/architectures List all architectures

GET List all architectures for operating system

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

