
Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Katello 3.14 Installation
These instructions are for installing Katello 3.14, but the latest stable is 3.18.

After installation of Katello, navigate to the /pub directory and trust Katello’s CA certificate for identifying web sites (e.g.
http://katello.example.com/pub/katello-server-ca.crt).

Important Note for Existing Installations

Katello does not currently support installation on existing Foreman deployments. DO NOT attempt to install Katello on an
existing Foreman deployment, unless you are a Foreman developer and willing to debug the broken configuration that will
result from attempting an install on existing system.

Hardware Requirements
Katello may be installed onto a baremetal host or on a virtual guest. The minimum requirements are:

Two Logical CPUs
8 GB of memory (12 GB highly recommended)
The filesystem holding /var/lib/pulp needs to be large, but may vary depending on how many different Operating
Systems you wish to syncronize:

Allocate 30 GB of space for each operating system. Even though an operating system may not take up this much
space now, this allows space for future updates that will be syncronized later.

The path /var/spool/squid/ is used as a temporary location for some types of repository syncs and may grow to consume
10s of GB of space before the files are migrated to /var/lib/pulp. You may wish to put this on the same partition as
/var/lib/pulp.
The filesystem holding /var/lib/mongodb needs at least 4 GB to install, but will vary depending on how many different
Operating Systems you wish to syncronize:

Allocate around 40% of the capacity that has been given to the /var/lib/pulp filesystem
The root filesystem needs at least 20 GB of Disk Space

Required Ports
The following ports need to be open to external connections:

80 TCP - HTTP, used for provisioning purposes
443 TCP - HTTPS, used for web access and api communication
5647 TCP - qdrouterd - used for client and Smart Proxy actions
9090 TCP - HTTPS - used for communication with the Smart Proxy

Production
Katello provides a Puppet based installer for deploying production installations. Production installations are supported on the
following operating systems:

CentOS 7 (x86_64)
Red Hat Enterprise Linux 7 (x86_64)

Installation may be done manually or via our recommended approach of using forklift.

Required Repositories
Select your Operating System: Red Hat Enterprise Linux 7

Installation
After setting up the appropriate repositories, update your system:

Then install Katello:

At this point the foreman-installer should be available to setup the server. The installation may be customized, to see a list of

subscription-manager repos --disable "*"
subscription-manager repos --enable rhel-7-server-rpms
subscription-manager repos --enable rhel-7-server-optional-rpms
subscription-manager repos --enable rhel-7-server-extras-rpms
yum install -y yum-utils

yum -y localinstall https://yum.theforeman.org/releases/1.24/el7/x86_64/foreman-release.rpm
yum -y localinstall https://fedorapeople.org/groups/katello/releases/yum/3.14/katello/el7/x86_64/katello-repos-latest.rpm
yum -y localinstall https://yum.puppet.com/puppet6-release-el-7.noarch.rpm
yum -y localinstall https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
yum -y install foreman-release-scl

yum -y update

yum -y install katello

options:

Note

Prior to running the installer, the machine should be set up with a time service such as ntpd or chrony, since several Katello features
will not function well if there is minor clock skew.

These may be set as command line options or in the answer file (/etc/foreman-installer/scenarios.d/katello-answers.yaml).
Now run the options:

Multiple subnets and domains
The installer only supports one subnet and one DNS domain via command line arguments. Multiple entries can be entered via
/etc/foreman-installer/custom-hiera.yaml file:

Tuning options
The Foreman installer supports automatic tuning of your environment using predefined tuning profiles. These tuning profiles
are the result of a culmination of extensive learning from Foreman environments deployed at scale in large user environments.

When the foreman-installer is run, it is deployed with a default predefined tuning profile. Other than the default tuned profile,
foreman-installer supports 4 different tuning profiles:

medium
large
extra-large
extra-extra-large

Based on your environment needs, use one of the tuning profiles (medium , large , extra-large , extra-extra-large) in the
installer. For example, medium profile can be applied like:

To reset to the default profile:

Use foreman-installer --help | grep tuning to identify the current tuning level.

Sample output for medium tuning:

foreman-installer --scenario katello --help

foreman-installer --scenario katello <options>

dhcp::pools:
 isolated.lan:
 network: 192.168.99.0
 mask: 255.255.255.0
 gateway: 192.168.99.1
 range: 192.168.99.5 192.168.99.49
dns::zones:
 # creates @ SOA $::fqdn root.example.com.
 # creates $::fqdn A $::ipaddress
 example.com: {}

 # creates @ SOA test.example.net. hostmaster.example.com.
 # creates test.example.net A 192.0.2.100
 example.net:
 soa: test.example.net
 soaip: 192.0.2.100
 contact: hostmaster.example.com.

 # creates @ SOA $::fqdn root.example.org.
 # does NOT create an A record
 example.org:
 reverse: true

 # creates @ SOA $::fqdn hostmaster.example.com.
 2.0.192.in-addr.arpa:
 reverse: true
 contact: hostmaster.example.com.

foreman-installer --tuning medium

foreman-installer --tuning default

Sample output for default tuning:

Note

Definitions of various tuning profiles can be found in this directory /usr/share/foreman-
installer/config/foreman.hiera/tuning/sizes/ . Note that common.yaml is always applied and the selected tuning profile (e.g.,
medium) is applied on top and takes precedence.

Using the --tuning option does not update /etc/foreman-installer/custom-hiera.yml , instead it directly updates the
required configuration as specified in the corresponding tuning profile. You can still use custom-hiera.yml to override
any configuration if really needed.
If you had already used custom-hiera.yml and starting to use the tuned profiles, you may want to review the definition
of tuned profiles (/usr/share/foreman-installer/config/foreman.hiera/tuning/common.yaml and /usr/share/foreman-
installer/config/foreman.hiera/tuning/sizes/) and remove the duplicated configuration entries from your custom-hiera.yml .
You can also optionally use foreman-installer --tuning <profile> --noop to run the installer in a test mode and identify what
configurations will be changed before actually running the installer.

Which tuning profile should you choose?
It is difficult to find the exact tuning profile for a specific environment in the first attempt because it depends on various factors
like the number of managed hosts, the features used in scale (E.g., Remote Execution), the bulk actions on hosts, the total
amount of content, amount of host traffic to foreman, etc. Our recommendation is that you start with the tuning profile
guidance as shown in the below table based on the number of managed hosts and scale up your environment as needed.

Note

The information in the table below is just a guidance. It is strongly recommended that you monitor the foreman
environment regularly and tune up as required.
The RAM and CPU Cores check is also integrated into the foreman-installer now. Use disable-system-checks if you like to
skip this check in the installer.

Tuned profile Number of Managed hosts Minimum Recommended RAM Minimum Recommended CPU Cores

default up-to 5000 20G 4

medium 5000 - 10000 32G 8

large 10000 - 20000 64G 16

extra-large 20000 - 60000 128G 32

extra-extra-large 20000 - 60000 256G 48

Forklift
Foreman provides a git repository designed to streamline setup by setting up all the proper repositories. Forklift provides the
ability to deploy a virtual machine instance via Vagrant or direct deployment on an already provisioned machine. For details on
how to install using forklift, please see the README.

foreman-installer --help | grep tuning
 --tuning INSTALLATION_SIZE Tune for an installation size. Choices: default, medium, large, extra-large, extra-extra-large (defau
lt: "medium")

foreman-installer --help | grep tuning
 --tuning INSTALLATION_SIZE Tune for an installation size. Choices: default, medium, large, extra-large, extra-extra-large (defau
lt: "default")

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Smart Proxy Installation
Hardware Requirements
The Smart Proxy server is only supported on x86_64 Operating Systems

2 Two Logical CPUs
8 GB of memory
Disk space usage is similar to that of the main Katello server Installation

Required Ports
At a minimum, the following ports need to be open to external connections for installation:

80 TCP - HTTP, used for provisioning purposes
443 TCP - HTTPS, used for web access and api communication
9090 TCP - HTTPS - used for communication with the Smart Proxy

See the User Guide for additional information about Smart Proxy services and required ports.

Installation
Install needed packages:
The same yum repositories need to be configured on the Smart Proxy server as the main Katello server. See the installation
guide for the list of required repositories.

Once you get the repositories configured, install the formean-proxy-content package on the Smart Proxy

Generate Certificates for the Smart Proxies
Prior to installing the Smart Proxy, we need to generate certificates on the main Katello server:

In the above example, replace ‘myproxy.example.com’ with your Smart Proxy’s fully qualified domain name. This will generate
a tar file containing all the needed certificates. You will need to transfer those certificates to the server that you will install your
Smart Proxy on using whatever method you prefer (e.g. SCP).

The foreman-proxy-certs-generate command will output an example installation command. For example:

Install Smart Proxy
Use the provide installation command from foreman-proxy-certs-generate , and tailor for your own purposes as needed. The
defaults will give you a Smart Proxy ready for Content-related services.

See the User Guide to learn about setting up provisioning related services, as well as the Foreman manual

yum install -y foreman-proxy-content

foreman-proxy-certs-generate --foreman-proxy-fqdn "myproxy.example.com"\
 --certs-tar "~/myproxy.example.com-certs.tar"

Installing Done [100%] [.....................]
 Success!

 To finish the installation, follow these steps:

 1. Ensure that the foreman-installer-katello package is installed on the system.
 2. Copy ~/myproxy.example.com-certs.tar to the system myproxy.example.com
 3. Run the following commands on the Smart Proxy (possibly with the customized
 parameters, see foreman-installer --scenario foreman-proxy-content --help and
 documentation for more info on setting up additional services):

 yum -y localinstall http://katello.example.com/pub/katello-ca-consumer-latest.noarch.rpm
 subscription-manager register --org "Default_Organization"
 foreman-installer --scenario foreman-proxy-content\
 --foreman-proxy-content-parent-fqdn "katello.example.com"\
 --foreman-proxy-register-in-foreman "true"\
 --foreman-proxy-foreman-base-url "https://katello.example.com"\
 --foreman-proxy-trusted-hosts "katello.example.com"\
 --foreman-proxy-trusted-hosts "myproxy.example.com"\
 --foreman-proxy-oauth-consumer-key "UVrAZfMaCfBiiWejoUVLYCZHT2xhzuFV"\
 --foreman-proxy-oauth-consumer-secret "ZhH8p7M577ttNU3WmUGWASag3JeXKgUX"
\
 --certs-tar-file "/root/myproxy.example.com-certs.tar"
 The full log is at /var/log/foreman-proxy-certs-generate.log

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Client Installation
Client machines can be added in one of two ways: manually or via a provisioned host.

Manual
Install the appropriate Katello client release packages.

Select your Operating System: Enterprise Linux 7 (CentOS, etc.)

Now you are ready to install the client package:

The katello-host-tools package reports errata & package profile information, but does not allow you to run remote actions on
the clients.

We generally recommend using Foreman Remote Execution or Ansible for remote actions, but we also offer a messaging bus
based client that does have some limitations when used with a large number of clients.

Optionally you can also install `katello-host-tools-tracer` and the client will report processes that need restarting after an
update back to the Katello server.

Provisioned
In order to install the katello-agent package on a host you are provisioning, you will need to make the appropriate client
repository available within your Katello. The first step is to either create a new product or add to an existing product, the
appropriate client repository from the dropdown in the manual section above. After you create the new repositories, they will
need to be synced locally. Next, you will then need to add them to the relevant content view(s) for the hosts you are wanting to
provision. At this point, a new version of the content view can be published and promoted to the appropriate environments
that you are wanting to provision a host into. At this point, you can go provision a host and the host will install the katello-agent
package during setup.

When provisioning new clients that should use Puppet 5, set a parameter called ‘enable-puppet5’ to ‘true’, so the templates
know which package to install and where to place the configuration. This parameter can be placed at the host, host group, or
another appropriate level of the hierarchy.

yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
yum install -y https://yum.theforeman.org/client/1.24/el7/x86_64/foreman-client-release.rpm

yum install katello-host-tools

yum install katello-agent

yum install katello-host-tools-tracer

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Katello Upgrade
Katello supports upgrades from the previous two versions only. Upgrades should be performed sequentially without skipping
versions in between.

Pre-upgrade
Before upgrading, run the upgrade check script that will check for any active tasks:

foreman-rake katello:upgrade_check

Step 1 - Backup
If Katello is running on a virtual machine, we recommend to take a snapshot prior to upgrading. Otherwise, take a backup of
the relevant databases by following the instructions here.

Step 2 - Operating System
Ensure your operating system is fully up-to-date:

Step 3 - Repositories
Update the Foreman and Katello release packages:

RHEL7 / CentOS 7:

Step 4 - Update Packages
Clean the yum cache

Update the required packages:

Step 5 - Run Installer
The installer with the –upgrade flag will run the right database migrations for all component services, as well as adjust the
configuration to reflect what’s new in Katello 3.14.

Step 6 - Reboot if necessary
If kernel packages are updated during Step 2 the system must be rebooted to ensure the new kernel and SELinux policy are
loaded. If there are no kernel or selinux updates then this step can be omitted.

Congratulations!
You have now successfully upgraded your Katello to 3.14.

For a rundown of what was added, please see the release notes.

If the above steps failed, please review /var/log/foreman-installer/katello.log and let us know about it if unable to resolve.

yum -y update

 yum update -y https://fedorapeople.org/groups/katello/releases/yum/3.14/katello/el7/x86_64/katello-repos-latest.rpm
 yum update -y https://yum.theforeman.org/releases/1.24/el7/x86_64/foreman-release.rpm
 yum update -y foreman-release-scl

yum clean all

yum -y update

foreman-installer --scenario katello --upgrade

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Smart Proxy Upgrade
Step 1 - Operating System
Ensure your operating system is fully up-to-date:

NOTE: If kernel packages are updated here (e.g. upgrading el 6.6 to 6.7), you must reboot and ensure the new kernel and
SELinux policy is loaded before upgrading Katello.

yum -y update

Step 2 - Repositories
Update the Foreman and Katello release packages:

RHEL7 / CentOS 7:

Step 3 - Update Packages
Clean the yum cache

Update packages:

Step 4 - Regenerate Certificates
On the Katello server, regenerate the certificates tarball for your Smart Proxy:

And copy them to your Smart Proxy:

Step 5 - Run Installer
The installer with the –upgrade flag will run the right database migrations for all component services, as well as adjusting the
configuration to reflect what’s new in Katello 3.14

Congratulations! You have now successfully upgraded your Smart Proxy to 3.14 For a rundown of what was added, please see
release notes.!

If for any reason, the above steps failed, please review /var/log/foreman-installer/foreman-proxy.log – if any of the “Upgrade
step” tasks failed, you may try to run them manaully below to aid in troubleshooting.

 yum update -y https://fedorapeople.org/groups/katello/releases/yum/3.14/katello/el7/x86_64/katello-repos-latest.rpm
 yum update -y https://yum.theforeman.org/releases/1.24/el7/x86_64/foreman-release.rpm

yum clean all

yum update -y

yum install foreman-proxy-content

foreman-proxy-certs-generate --foreman-proxy-fqdn "myproxy.example.com"\
 --certs-update-all\
 --certs-tar "~/myproxy.example.com-certs.tar"

scp ~/myproxy.example.com-certs.tar myproxy.example.com:

foreman-installer --scenario foreman-proxy-content --upgrade\
 --certs-tar-file ~/myproxy.example.com-certs.tar\
 --certs-update-all --certs-regenerate true --certs-deploy tru
e

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Client Upgrade
When upgrading clients there are 2 scenarios: manually added clients and provisioned clients.

Step 1 - Update Repositories
Manually Added Clients
Update the Katello client release packages:

Select your Operating System: Enterprise Linux 5 (RHEL, CentOS, etc.)

Provisioned Clients
If the katello-agent was setup during provisioning from a locally synced repository then you will need to go through some
initial setup to add the 3.14 client repositories to your Katello for each version needed. After you create the new repositories,
they will then need to be added to the relevant content view(s) and the older versions removed. At this point, a new version of
the content view can be published and promoted to the appropriate environments. Once the new package is available the
clients can be updated following the next steps.

Step 2: Update Packages
Clean the yum cache

Update packages:

yum update -y https://yum.theforeman.org/client/1.24/el5/x86_64/foreman-client-release.rpm

yum clean all

yum update katello-agent

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Katello 3.14 Release Notes
Features

Make installed packages available in safe mode (#28082, c98fdc14)
Generate the complete report about Entitlement Information (hypervisors versus Content Hosts) (#27923, 63ce30ba)
Add host collections to safe mode (#27893, 32e7c74e)
[RFE] Add ability to export content view like the CDN (#27374, 03542576)
Content -> Errata should only show repositories that actually contain Errata (#26975, 6860f9c3)

This release contains many bug fixes in addition to laying the groundwork for moving toward Pulp 3. For the full release notes,
see the Changelog.

Deprecation Warnings
deprecate ostree and puppet types (#28074, afaed50b)
deprecate background download type (#28021, e8979cea)

Contributors
Adam Ruzicka
Avi Sharvit
Chris Roberts
Evgeni Golov
Ewoud Kohl van Wijngaarden
Ian Ballou
Ivan Necas
James Jeffers
Jeremy Lenz
John Mitsch
Jonathon Turel
kgaikwad
Lukas Zapletal
Marek Hulan
Markus Bucher
Nagoor Shaik
Oleh Fedorenko
Ondrej Ezr
Ondrej Prazak
Partha Aji
Quirin Pamp
Samir Jha
Suraj Patil
swetha
Justin Sherrill
Tomer Brisker
Walden Raines
William Clark

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Hammer
What is the CLI?
The Hammer CLI provides users with a command-line interface for interacting with Katello. It’s our goal to make all
functionality that’s accessible through Katello’s Web UI also available through Hammer so that users may use Hammer for their
entire Katello workflow.

Installation

The first step to install the CLI is to setup the appropriate repositories: foreman, katello and epel.

Select your Operating System: Red Hat Enterprise Linux 7

After setting up the appropriate repositories, install Katello:

How do I use Hammer?
To get started with hammer, view the help:

How do I contribute to Hammer?
See the Katello Hammer CLI project if you want to get setup for contributing to the hammer code.

yum -y --disablerepo="*" --enablerepo=rhel-7-server-rpms install yum-utils wget
yum-config-manager --disable "*"
yum-config-manager --enable rhel-7-server-rpms
yum-config-manager --enable rhel-7-server-optional-rpms
yum-config-manager --enable rhel-7-server-extras-rpms

yum -y localinstall https://fedorapeople.org/groups/katello/releases/yum/3.14/katello/el7/x86_64/katello-repos-latest.rpm
yum -y localinstall https://yum.theforeman.org/releases/1.24/el7/x86_64/foreman-release.rpm
yum -y localinstall https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

yum -y install tfm-rubygem-hammer_cli_katello

hammer -u <user> -p <password> --help

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Activation Keys
Activation Keys provide a mechanism to define properties that may be applied to Content Hosts during registration. This
includes properties such as:

Lifecycle Environment
Content View
Subscriptions
Repository Enablement
Host Collections
System Purpose

Definitions
Content Host
Host Collection - A statically defined group of Content Hosts.
Subscription - The right to receive the associated content from Katello.
System Purpose - Helps auto-attach find a subscription that satisfies the intended use of the system

General Features
The following is a high-level summary of the Activation Key features:

Create an Activation Key
Add subscriptions to an Activation Key
Change repository enablement for an Activation Key
Add Host Collections to an Activation Key
Add System Purpose details to an Activation Key
Register a Content Host using an Activation Key
View Content Hosts registered with an Activation Key

Create an Activation Key
To create a new key,

navigate to: Content > Activation Keys
click New Activation Key

Name: This required option is used to identify the activation key to command line tools, such as subscription-manager.

Content Host Limit: This option will control how many Content Hosts may be registered using the key. An “unlimited”
value will not place any limits on usage. Specifying a quantity will limit the number of registered content hosts.
Registering with an activation key consumes one of the available limit quantity, while unregistering makes it available
again. (i.e. this quantity is not a usage counter but a limit of actively registered content hosts)

Description: A free form text field that can be used to store a description of the key for later reference or for pseudo-
tagging that can be used to search.

Environment and Content View: Although optional, at least one activation key used during registration must specify a
content view. Activation keys are used in the order specified to subscription-manager meaning the last activation key
with a content view takes precedence.

The following example would use CV_B’s content view:

Or equivalently:

subscription-manager register --org Default_Organization --activationkey NO_CV --activationkey CV_A --activationkey CV_B

subscription-manager register --org Default_Organization --activationkey NO_CV,CV_A,CV_B

For registration to succeed, at least one activation key must be successfully applied. For an activation key to succeed, at least
one of the listed subscriptions must be successfully attached to the registering content host.

Add Subscriptions to an Activation Key
To add subscriptions to a key:

navigate to: Content > Activation Keys
select the desired key from the list
click Subscriptions
click Add
select the Subscriptions you would like to add
click Add Selected

The Auto-Attach setting controls how the group of subscriptions are processed during registration.

When ‘Auto-Attach’ is enabled but no subscriptions are added to the activation key, subscriptions will be automatically added
to cover the installed products. This is equivalent to passing the ‘–auto-attach’ flag to the subscription-manager command:

When ‘Auto-Attach’ is enabled and subscriptions are listed for the activation key, two things will happen. First all subscriptions
for custom products will be attached to the registering content host. Second, the group of Red Hat subscriptions will be
attached as needed to cover the content host’s installed Red Hat products. This is most commonly used when there is a group
of similar subscriptions (eg. several Red Hat Enterprise Linux from different contracts, or guest subscriptions from different
hypervisors) and which one used is not important. Katello’s subscription tooling, Candlepin, will automatically choose the
minimal proper subscriptions from the group.

Finally, when ‘Auto-Attach’ is disabled, all subscriptions on the activation key will attached to the registering content host,
regardless of whether needed to cover an installed product or not. For example, adding an OpenStack Platform subscription
would then allow that product to be installed after registration.

Change Repository Enablement for an Activation Key
To change repository enablement settings using a key:

navigate to: Content > Activation Keys
select the key you want from the list
click Repository Sets
select the repository you want to modify
select the value you want to change from the Select Action menu(‘Override to Enabled’, ‘Override to Disable’, ‘Reset to
Default’)

View and change settings:

subscription-manager register --org=Default_Organization --auto-attach

Add Host Collections to an Activation Key
To add Host Collections to a key:

navigate to: Content > Activation Keys
select the key you want from the list
click Host Collections
click Add
select the Host Collections you would like to add
click Add Selected

Add System Purpose details to an Activation Key
To add System Purpose to a key:

navigate to: Content > Activation Keys
select the key you want from the list
There is a section for System Purpose where you can set the Service Level, Usage Type, Role, and Add-ons for a system.

View Content Hosts registered with the Activation Key
To view Content Hosts registered with a particular Activation Key:

navigate to: Content > Activation Keys
select the key you want from the list
select Content Hosts under Associations

Register a Content Host using an Activation Key
The simplest form of registering a content host with an activation key is this:

Click here for more information

Note that modifying an activation key does not change anything on content hosts previously registered with the key.

subscription-manager register --org=Default_Organization --activationkey=$KEY_NAME

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Backup
Please use Foreman Maintain for backup and restore functionality. Foreman-maintain is a dependency of Katello starting in
3.7.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Smart Proxies
What are Smart Proxies?
The Smart Proxy server is a Katello component that provides federated services to discover, provision, control, and configure
hosts. Each Katello server includes a Default Smart Proxy, and you may deploy additional Smart Proxies to remote data
centers. A Smart Proxy server provides the following features:

Content features, including:
Repository synchronization

Content delivery
Host action delivery (package installation updates, etc)
Subscription management proxy (RHSM)

Foreman Smart Proxy features, including:
DHCP, including ISC DHCP servers
DNS, including Bind and MS DNS servers
Realm, including FreeIPA
Any UNIX-based TFTP server
Puppet Master servers
Puppet CA to manage certificate signing and cleaning
Baseboard Management Controller (BMC) for power management
Provisioning template proxy

The Katello Smart Proxy server is a means to scale out the Katello installation. Organizations can create various Smart Proxies
in different geographical locations. These are centrally managed through the Katello server. When a Katello user promotes
content to a particular environment, the Katello server will push the content to each of the Smart Proxy servers subscribed to
that environment. Hosts pull content and configuration from the Katello Smart Proxy servers in their location and not from the
central server.

In a fully configured Smart Proxy, communication is completely isolated between hosts and the Katello server.

What is a Foreman Proxy with Content?
A Katello Smart Proxy is a Foreman Smart Proxy with the addition of content-related services.

Deployment
In the simplest use case, a user may only want to use the Default Smart Proxy. Larger deployments would have a single Katello
server with multiple Smart Proxies attached, with these remote Smart Proxies deployed to various datacenters. Smart Proxies
can also be used to scale the number of hosts attached to a single Katello server.

Installation
See Smart Proxy Installation

Removal
To stop all services and remove all Katello and Foreman related packages, run the following command as root on the Smart
Proxy:

katello-remove

Smart Proxy Isolation
The goal of Smart Proxy Isolation is to provide a single endpoint for all of a client’s communication, so that in remote network
segments, you need only open Firewall ports to the Smart Proxy itself. The following section details the communication clients
need to have with a Smart Proxy. The installation options mentioned are the default starting with Katello 2.2.

Content and Configuration Services
There are five primary areas that require client communication:

1 - Content Delivery
That is, yum. Katello Smart Proxies by default have the Pulp feature, which mirrors content for the selected Lifecycle
Environments.

Install Option:

--pulp=true

Required Connectivity:

Clients need to be able to communicate with the Smart Proxy on port 443/tcp.

2 - Katello Agent
The Katello agent is a goferd plugin which allows you to schedule remote actions on hosts such as package installation,
updates, etc. A Smart Proxy must be running the Qpid Dispatch Router service for this feature to work.

Install Option:

--qpid-router=true

Required Connectivity:

Clients need to be able to communicate with the Smart Proxy on port 5647/tcp

3 - Puppet & Puppet CA
By default, the Puppet CA feature on the Smart Proxy is an independent CA which will manage the certificates for all the clients
registered against the Smart Proxy. Simply select the Puppetmaster and Puppet CA to be the Smart Proxy when creating a
host.

Install Option:

--puppet=true --puppetca=true .

Required Connectivity:

Clients need to communicate with the Smart Proxy on port 8140/tcp.

4 - Subscription Management
Content Hosts utilize Subscription Manager for registration to Katello and enabling/disabling specific repositories.

Install Option:

--reverse-proxy=true

Required Connectivity:

Clients need to talk to the Smart Proxy on port 8443/tcp.

5 - Provisioning Services
When provisioning a host using DHCP/PXE, you will need, at a minimum, the TFTP feature enabled on the Smart Proxy, and a
DHCP server available. While not required, the Smart Proxy can provide the DHCP service. In order for the installer to obtain its
kickstart template from the Smart Proxy, you should enable the templates feature.

If a TFTP proxy has the Templates feature as well, Foreman will automatically make the communication isolated. Your clients
need to talk to the Smart Proxy on port 67/udp and 68/udp for DHCP, 69/udp for TFTP, and 8000/tcp for Templates.

Consult the installer’s --help for the full range of provisioning options.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Content
Katello can currently host two different types of content, RPMs and puppet modules. RPMs and Puppet Modules can be
synced from an external resource or can be uploaded directly.

The advantages to using Katello to mirror your local content are:

Reduce bandwith usage and increase download speed by having client machines pull updates from Katello
Provision hosts using local Repositories covered HERE TODO
Customize content locally, covered HERE TODO

Definitions
Repository - Collection of content (either RPM or puppet)
Product - Collection of Repositories, Content Hosts subscribe to a product
Library - A special pre-created Lifecycle Environment where Repositories are created and content is synced or uploaded
to. A Content Host can subscribe to library and receive content as soon as the content is synced or uploaded.

Creating a Product
From the web UI, navigate to:

Content > Products > New Product (top right)

Creating a Repository
From the web UI, navigate to:

Content > Products > Select desired product > Create Repository (right hand side)

Note the following options:

Publish via HTTP: allows access to the Repository without any restriction. Unless you desire to restrict access to your
content in this Repository, we recommended to leave this checked.
URL: If you are syncing from an external Repository (yum or puppet), this would be filled in. This can be changed, added,
or removed later. For example if you are wanting to create a mirror of EPEL, you would set this to
‘https://dl.fedoraproject.org/pub/epel/6/x86_64/’.

Syncing a Repository
From the web UI, navigate to:

Content > Products > Select desired product > Select the Repository > Sync Now

The progress will be displayed:

Syncing multiple repositories

To easily sync multiple repositories at once and track their progress, navigate to:

Content > Sync Status

From here you can expand the desired products, and select multiple repositories to sync.

Uploading RPM Content
Uploading RPM content directly is not currently supported. You will need to build a custom yum Repository. TODO Provide
instructions on creating a custom yum repo

Uploading Puppet Content
To upload puppet modules, first create a Repository with type puppet (similarly to creating a yum Repository above):

When creating this Repository the URL field can be left blank.

Puppet modules can be uploaded via the Web UI, navigate to:

Content > Repositories > Products > Select desired Product > Select desired Puppet Repository > Select file on the right

Subscribing a System to a Product for yum content
To read about registering systems and subscribing them to the Product click TODO.

Scheduling Repository Synchronization
Sync plans give you the ability to schedule Repository synchronization on a hourly, daily or weekly basis. Sync Plans are applied
to Products and thus all Repositories within a Product will be synchronized according to the products plan.

Creating a Sync Plan
If you would like to schedule certain repositories to sync on a hourly, daily or weekly basis, Sync Plans give you this capability.

To create a Sync Plan, navigate to:

Content > Sync Plans > click “New Sync Plan” on the upper right

The Start Date and Start Time fields are used as the day of the week/month and time of the day to run the re-occuring syncs.

For example a sync plan that starts on Sunday 2014-04-06 at 2:30 will occur every Sunday at 2:30 every week if it has a weekly
interval. If on a daily interval it would sync every day at 2:30.

Assigning a Sync Plan to a Product
Navigate to:

Content > Sync Plans > Select your Sync Plan > Products > Add

Then select the Products you want to add and click “Add Selected” in the upper right.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Content Hosts
What is a Host?
A Host is a Foreman concept that represents a server/host/system/computer (whatever you want to call it). In addition to
holding facts about the system, it:

Stores which operating system the system should be running
Stores which puppet classes should be assigned
Stores which parameters apply to which puppet classes

Allows you to re-provision the machine

What are Content Hosts?
Content Hosts are the part of a host that manages Content and Subscription related tasks. As time goes on more and more of
this functionality will be moved to the Host object. A Host’s Content Host:

Stores which Products are assigned (i.e. which Repositories will the system pull content from)
Initiates package install/upgrade/removal
Determines which errata apply to a system
Initiates errata installation
Stores details about System Purpose

How is a Content Host registered?
Subscription Manager is the client for Katello that handles registration.

Installing Subscription Manager
Depending on your Operating System, for:

RHEL, subscription-manager is installed by default
Fedora, subscription-manager is available from the Everything repo for its release: yum install subscription-manager
CentOS 7, subscription-manager is available in the ‘os’ repo for its release: yum install subscription-manager
CentOS 5/6, enable the upstream subscription-manager repo and then install subscription-manager (be sure to change
‘6’ to ‘5’ if you’re on EL5, as the version from 6 will not work):

Registering with Subscription Manager
First install the bootstrap rpm from your Katello server:

Then register:

Subscription manager will prompt for your username and password. You can also specify --username $USER --password
$PASS on the command line.

Registering to a Content View
To register to Content View “MyView” in a “Devel” Lifecycle Environment:

Registering without using a username and password
Activation Keys allow you to register and consume content without using a username and password. To create an Activation
Key see the Activation Key Guide

Once you have created an activation key, register with:

Actions with registered Content Hosts
To see the list of your Content Hosts, navigate to Hosts > Content Hosts

wget -O /etc/yum.repos.d/subscription-manager.repo http://copr.fedoraproject.org/coprs/dgoodwin/subscription-manager/repo/epel-6/
dgoodwin-subscription-manager-epel-6.repo

yum install subscription-manager -y

rpm -Uvh http://$KATELLO_HOSTNAME/pub/katello-ca-consumer-latest.noarch.rpm

subscription-manager register --org=Default_Organization --environment=Library

subscription-manager register --org=Default_Organization --environment=Devel/MyView

subscription-manager register --org=Default_Organization --activationkey=$KEY_NAME

Changing the Lifecycle Environment and Content View of a
Content Host:
Navigate to the Content Host Details page, Host > Content Hosts > Click the name of the desired Content Host

Look in the upper right corner for the “Content Host Content”:

Then select the new Lifecycle Environment you desire, select the new Content View you desire, and click save.

Assigning a Content Host to a Product
In order for a Content Host to receive package updates and access Repositories hosted on Katello, it needs to be subscribed to
a product.

Navigate to Hosts > Content Hosts > Select Content Host > Subscriptions > Click the “Add” tab

Check the checkbox under the Products you want to add and select “Add Selected” in the upper right.

To see existing attached Products, click the “List/Remove” tab. To remove a Product, select the checkbox under the desired
Product in this list and click “Remove Selected”.

Package Management
To perform package actions on a singleContent Host, navigate to: Hosts > Content Hosts > Select Content Host > Packages

From here you can:

See a list of installed packages
Perform a yum install/update/remove of a Package or Package Group
Update all packages (equivalent of running ‘yum update’)

View and Install Applicable Errata
If your synced Repositories contain Errata, you can use Katello’s Errata management to track and install Errata.

Navigate to: Hosts > Content Hosts > Select Content Host > Errata

To apply errata, search for the errata you want and select the checkbox beside each errata. Then click “Apply Selected” at the
top right.

The “Show From” filters what applicable errata to show:

Current Environment - Shows only Applicable Errata available in the Host’s Content View & Lifecycle Environment.
Previous Environment - Shows Applicable Errata that are available from the Host’s Content View but in the previous
Lifecycle Environment. Promoting the Content View Version from that previous Lifecycle Environment to the current
Lifecycle Environment for this Host would cause all Applicable Errata shown to then be available.
Library Synced Content - Shows Applicable Errata which have been synced to the Library. This shows you what is
applicable even when the Errata have not been published into a Content View. All applicable Errata are shown regardless
of availability to the Content Host.

Change Host Collection Asssignments
To change Host Collection assignments for a Content Host, navigate to: Hosts > Content Hosts > Select Content Host > Host
Collections

Bulk Actions
Katello provides the ability to perform actions on many Content Hosts at once such as:

Package installation/upgrade/removal
Listing and applying applicable errata
Assigning Host Collections
Changing Lifecycle Environment and Content View assignments

In order to use the bulk actions, perform whatever search you desire and select which Content Hosts you want to modify. If
you want to select all Content Hosts from a search result, click the ‘checkbox’ above the table:

This will select all Content Hosts on that page (only the ones that are visible). To select all that correspond to that search query,
notice a bar has now appeared:

Next select the ‘Bulk Actions’ button in the top right.

From here you can select the tab corresponding to any action you wish to perform.

Set System Purpose attributes
To set System Purpose attributes for a host, Navigate to the Content Host Details page, Host > Content Hosts > Click the name
of the desired Content Host. You can edit Service Level, Role, Usage Type, and Add-ons from the System Purpose section.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Content Views
What can a Content View be used for?

To stage content through environments (Dev, Test, Production).
To filter the contents of a repository (include a package or exclude certain errata, for example).
To have multiple snapshots of the same repository and/or puppet modules.

Definitions
Content View - snapshot of one or more repositories and/or puppet modules.

Composite Content View - a Content View that contains a collection of other Content Views.
Filter - provides finer grained control over content in a Content View. Can be used to include or exclude specific
packages, package groups, or errata.
Publishing - Content Views are ‘published’ in order to lock their contents in place. The content of the Content View is
cloned and all filters applied. Publishing creates a new version of the Content View.
Promoting - Content Views can be cloned to different Lifecycle Environments (Dev, Test, Production).

General Workflow
First create a product and repository in the library environment and populate the repository with content (by syncing it or
uploading content). A Content Host can now register directly to library and be attached to the content therein. Updates will be
available as soon as new content is synced or uploaded.

To utilize Content Views for filtering and snapshoting:

1. Create a Content View
2. Add the desired repository and/or puppet modules to the Content View
3. Optionally create one or more Filters to fine tune the content of the Content View.
4. Publish the Content View
5. Attach the Content Host to the Content View
6. Optionally promote the Content View to another environment

At this point the Content Host will no longer be getting content directly from Library, but from the Content View. Updates to
library will not affect this Content Host.

Note that all of the actions below can also done with hammer, the CLI tool, and examples are given at the end of each section.

Creating a Content View
To create a Content View using the web UI, navigate to:

Content > Content Views

Click the Create New View button on the top right of the screen.

From the CLI:

Creating a Composite Content View

hammer content-view create \
 --organization="Default Organization" \
 --name="New Content View" \
 --description="This is my new content view."

To create a Composite Content View using the web UI follow the above steps for Creating a Content View but check the
“Composite View?” checkbox.

From the CLI:

Adding Repositories
Adding a repository to a Content View means whenever a Content View is published, all of the content contained within the
repository at that time is included in the Content View. If the repository is synced after publishing the Content View, the
Content View will contain the state of the repository prior to syncing. A new version of the Content View must be published in
order for the new version to get the contents of the newly synced repository.

To add a repository using the web UI, navigate to:

Content > Content Views > Select the desired Content View > Content (within sub navigation) > Repositories

From the CLI, adding a repository:

Adding a Puppet Module
Adding a puppet module to a Content View means that whenever the Content View is published the puppet module is locked
to the version selected. If the “Use Latest” version is selected then the puppet module will be “frozen” at the latest version
available when the Content View is published. A new version of the Content View must be published in order for the new
version to get any updated puppet module.

To add a puppet module using the web UI, navigate to:

Content > Content Views > Select the desired Content View > Puppet Modules (within sub navigation)

hammer content-view create \
 --organization="Default Organization" \
 --name="New Composite Content View" \
 --description="This is my new composite content view." \
 --composite

hammer content-view add-repository \
 --organization="Default Organization"
 --name="New Content View" \
 --repository="CentOS 6.5"

From the CLI, first find the UUID of your puppet module from the list:

Then add the puppet module:

Adding Content Views to a Composite Content View
Adding a version of a Content View to a Composite Content View means whenever the Composite Content View is published,
all of the content contained within the specific version of that Content View is contained in the Composite Content View. If the
Content Views contained within the Composite Content View are updated (i.e. a new version is published) or if their content is

hammer puppet-module list \
 --organization="Default Organization" \
 --repository "Puppet Modules"

hammer content-view puppet-module add \
 --organization="Default Organization" \
 --content-view="New Content View" \
 --uuid=91cc9bb7-dbb3-4798-b50a-45173b763cbb

updated after publishing the Composite Content View, the Composite Content View will only contain the versions of the
Content View(s) prior to syncing. A new version of the Composite Content View must be published in order for it to get the
updated Content Views.

To add a Content View to a Composite Content View using the web UI, navigate to:

Content > Content Views > Select the desired Content View > Content (within sub navigation) > Repositories

Find the Content View ID of the specific version of the Content View to add:

From the CLI, add a Content View to a composite Content View:

Creating a filter
If only using Content Views as snapshots, Filters are unnecessary. If the desire is to filter what content make it into the view,
such as blacklisting a package by name or version, or blacklisting errata by date or type, Filters can help accomplish these
tasks.

To create a new Content View Filter using the web UI, navigate to:

Content > Content Views > Select the desired Content View > Content (within sub navigation) > Filters > New Filter

hammer content-view version list \
 --organization="Default Organization" \
 --content-view="New Content View"

hammer content-view update \
 --organization="Default Organization" \
 --content-view="New Composite Content View" \
 --component-ids=2

From the CLI, adding a Content View Filter:

From the CLI, adding a Content View Filter rule:

Selecting which Repositories to Filter
By default a Filter applies to all repositories (present and future) in the Content View. It’s possible to select which repositories
within the Content View apply to the filter. This is useful, for example, if the desire is to exclude errata from only certain
repositories in a view.

To select which repositories to Filter in the web UI, navigate to:

Content > Content Views > Select the desired Content View > Content (within sub navigation) > Filters > Select the desired Filter
> Affected repositories (within sub navigation)

hammer content-view filter create \
 --organization="Default Organization" \
 --content-view="New Content View" \
 --name="New Filter" \
 --inclusion=false \
 --type=rpm

hammer content-view filter rule create \
 --organization="Default Organization" \
 --content-view="New Content View" \
 --content-view-filter="New Filter" \
 --name="something-else" \
 --max-version="10.0.0" \
 --min-version="10.0.0"

From the CLI, adding a Content View Filter:

Publishing a Content View
Publishing a Content View produces a new version of the content view that is subsequently promoted to the Library lifecycle
environment. This newly published version of the content view is now available to any content host registered to Library.

To publish a Content View, in the web UI, navigate to:

Content > Content Views > Select the desired Content View > Publish New Version

hammer content-view filter update \
 --organization="Default Organization" \
 --name="New Filter" \
 --repository-ids=2,3,7

From the CLI:

Registering a Content Host
To register a Content Host that is not currently registered to the Content View, simply use subscription manager on the client
Content Host and run:

This would register the Content Host to the Library environment and the my_rhel_view Content View.

If the Content Host is already registered, from the UI:

Hosts > Content Hosts > Select the desired Content Host

hammer content-view publish \
 --organization="Default Organization" \
 --name="New Content View"

subscription-manager register --org=ACME_Corporation --environment=Library/my_rhel_view

From the CLI:

Promoting a Content View
Initially a Content View is published to Library as version 1. If there are Content Hosts in other environments that would like to
consume this Content View, a version of the content view will need to be promoted to those environments. For example, given
the Content View “New Content View”, version 1 of which has been promoted to the Dev environment. Any Content Hosts in
Dev attached to the Content View would remain at version 1 until a version 2 is both published and promoted to the Dev
environment.

To promote a Content View in the Web UI, navigate to:

Content > Content Views > Select the desired Content View > Versions (within sub navigation) > Click promote for desired
version

hammer content-host update \
 --organization="Default Organization" \
 --name="dhcp129-211.rdu.redhat.com" \
 --content-view="New Content View" \
 --lifecycle-environment="Library"

To promote a Content View in the CLI:

hammer content-view version promote \
 --organization="Default Organization" \
 --content-view="New Content View" \
 --to-lifecycle-environment="Test" \
 --version 1

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Katello Inter-Server Sync
NOTE: This feature has been deprecated and will be removed in a future release of Katello. Please consider using Content View
Import/Export instead.

NOTE: This feature is intended to replace the ‘katello-disconnected’ script.

Intro
If you are working in an air-gapped network environment where some of your Katello servers do not have Internet
connectivity, you may be interested in using the Katello Inter-Server Sync (ISS) feature. This allows you to export repos,

including repos in content views, on your “upstream” Katello server, and then import said repos into your “downstream” server
that does not have connectivity. Individual repos can be exported, or all of the repos in a content view.

List of currently supported repo content types:

yum

Future releases will enable support for additional content types.

The diagram above shows an example scenario where a user wants to export all Yum content in a content view and then
import to another Katello server. The ISO file is burned to media and then walked across the air-gap in the network.

Detailed Operation
Exporting
The ISS feature allows users to move Yum content from one Katello server to another, in a way that is compatible with air-
gapped networks. Typically users will set up an upstream server that is connected to the Internet, and then create a content
view that contains Yum content that they would like to present to the downstream server (step 1).

Content is exported via either hammer repository export or hammer content-view version export (step 2). It is exported to the
location set in “pulp_export_destination” in the Settings page, under the Katello tab. This defaults to /var/lib/pulp/katello_export .
Please be aware that the location needs to be readable and writable by the foreman user. SELinux permissions also need to be

set on the export location with the type httpd_sys_rw_content_t as well as foreman user and group ownership.

You can select to either export as a plain set of directories, or as a set of ISO files. The “iso_size_mb” parameter sets how large
you would like each ISO file to be. It defaults to 4380 MB, which is the size of a single-side, single-layer DVD.

Importing
Importing (step 3) can be done in one of two ways. The first way is to make the export available via HTTP to the importing
Katello instance. Simply put the export in /var/www/html/pub/export , either via copy or symlink. After that, edit your CDN
location from the manifest import page to point to “http:///export/path/to/export" and the Red Hat Repos page will then work
as expected, using your exported data. Please be sure to use 'http' and not 'https' when altering the CDN url. Katello by default
only supports the CA certificate for `cdn.redhat.com`. This is a [known limitation]
(http://projects.theforeman.org/issues/16392) that will be addressed in a future version.

The second way is to perform a repository sync via hammer, specifiying the source location. Please see the hammer repository
sync command for more information. This method is the only way to import custom content, and is the only way to import
incremental content.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Docker Management
Katello can be used to manage and deploy Docker content. Katello can retreive Docker content from a variety of sources such
as Docker hub, private Docker registries, the Red Hat CDN, and so forth. Docker content can then be published and promoted
via Content Views and then pulled or proivisioned to a server running Docker.

What is Docker?
Docker is a tool used to manage Linux containers. To read more about Docker, check out the official Docker site. Docker
repositories, which contain images and tags, can be retrieved, stored, managed, and deployed from Katello.

How to sync a Docker repository
The easiest way to get Docker content into Katello is to sync it in. You can either sync Docker content from the Red Hat CDN (if
you have subscriptions for the content) or from a registry such as Docker Hub.

Red Hat Docker Images
Content can be synced into Katello using a Red Hat manifest in much the same way as yum content. See our guide on how to
manage Red Hat content for more information.

Docker Hub/Docker Registry
To sync content from a Docker registry such as Docker Hub (which is the official Docker-run registry), simply start by creating a
new Repository.

On the new Repository screen, select “Docker” as the content type. Once you do that, you’ll be given two options: upstream
name and URL. The URL will be the registry URL; for Docker Hub, this would be https://registry-1.docker.io/ .

For the upstream name, you want to use the fully qualified upstream name which also includes any namespace such as the
username. This can be just “busybox” if the Repository is an official Docker Hub Repository or it can be something like
“fedora/ssh” where “fedora” is the username/namespace.

Then click save and then sync the Repository as you normally would. Katello will fetch all the images and tags contained within
that Repository.

How to Upload Docker Images
In versions of Katello prior to 3.0, Docker images could be uploaded directly via either the UI or CLI. However, Katello 3.0 only
supports the Docker Registry v2 format, which is significantly different than the Docker Registry v1 format. The docker save
command outputs a Docker image in v1 format, which cannot be uploaded directly to a v2 repository.

As a workaround, you can create a local Docker registry like so:

Note the :2 above, which specifies a v2 registry. Push your changes to your newly created local registry then follow the
instructions in the section above to sync this registry to Katello. This will ensure that your Docker content stays in Docker’s v2
registry format.

docker run -p 5030:5000 --name registry registry:2

How to Publish and Promote Docker Content
Docker content can be published and promoted via Content Views much like yum or puppet content.

After creating a Content View, visit the Docker Content tab. Here you can select any Docker repositories you want to add to
your Content View. After you’ve added Docker Repositories to your view, you may proceed as normal. Visit the Content View
user guide for more information.

How to View and Pull Docker Content
To view Docker content contained with Katello, visit the Docker Tags page. This can be accessed under the Content menu at
the top of any page.

On the Docker Tags page, you can see a list of Docker Tags grouped by Repository in Katello. This shows you Tags grouped
across Content Views and Lifecycle Environments. Suppose I wanted to pull the latest Tag from my redis repository, I would
click the latest row for my redis repository.

I can see here that my redis Repository has been added to a published Content View called redisv. If I want to use the tag from
that Content View, I would just copy the Published At URL and then on my docker server I would run:

How to Provision Docker Content
See how to provision content in the documentation in the foreman-docker documentation. Provisioning content from Katello
works in much the same way.

First, proceed to the new Container page by accessing it from the Containers menu at the top. Then, select the Local Content
tab on the second step. This will allow you to select a Docker image from a published Katello repository which is in an
environment/content view/Smart Proxy. Then just proceed in the wizard as per the Foreman Docker instructions. When you
are finished, you should have a new container running from an image in Katello.

$ docker pull localhost:5000/default_organization-library-redisv-Tester-redis:latest
Pulling repository localhost:5000/default_organization-library-redisv-Tester-redis...

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Email Notifications
Types of Email Notifications
In addition to the Email Notifications that Foreman provides:

Puppet run summary (Daily/Weekly/Monthly)
Puppet errors

Katello provides a few addition reports:

Katello Host Advisory (Daily/Weekly/Monthly) - A report of all of the Errata applicable to all readable Content Hosts
Katello Promote Errata - A report generated at Content View promotion time showing what Errata applicable to the
Content Hosts within that Content View.
Katello Sync Errata - A report generated after each Repository sync listing new Errata synced and how many Content
Hosts are applicable.

Configuring the Foreman/Katello to send emails:
The configuration of how the Foreman/Katello service sends email is located in Adminster > Settings > Email .

For more information see: Email Configuration

Opting in to the emails
By default a user will receive no email notifications. Each notification must be opted into.

To opt in for your own user, at the very top right of the web interface, hover over your Username, click “My Account” and then
click the “Mail Preferences” tab.

To opt in for other users, navigate to “Administer” > “Users” > Click the desired User > click the “Mail Preferences” tab.

Select which emails and frequency you would like the user to have and click “Submit”.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Errata
Errata are updates between major releases. An Erratum is metadata about a group of packages that explains the importance
of the package updates. Errata may be released individually on an as-needed basis or aggregated as a minor release. There are
three main types of errata:

Enhancement: the new packages contain one or more added features
Bugfix: the new packages contain one or more bug fixes
Security: the new packages fix one or more security vulnerabilities

With regard to Content Hosts, Errata is divided into two distinct classifications depending on whether or not the Errata is

present in the Content Host’s Lifecycle Environment and Content View:

Applicable: the errata applies to one or more Content Hosts
Installable: the errata applies to one or more Content Hosts and is present in the Content Host’s Lifecycle Environment
and Content View

Definitions
Content Host
Content View
Lifecycle Environment

General Features
The following is a high-level summary of the Errata features:

View List of Errata
View Errata Details
View Affected Content Hosts
View Repositories Containing Errata
Applying Errata

View List of Errata
To view the list of Errata in the Organization:

navigate to: Content > Errata

View Errata Details
To view the details of an Errata:

navigate to: Content > Errata
Click on an Errata ID

View Affected Content Hosts
To view the Affected Content Hosts of an Errata:

navigate to: Content > Errata
Click on an Errata ID
Click on the Content Hosts Tab

Note the following option:

Checking the box limits the display of Content Hosts to those which already have the Errata available in their Lifecycle
Environment and Content View.

View Repositories Containing Errata
To view the Repositories Containing an Errata:

navigate to: Content > Errata
Click on an Errata ID
Click on the Repositories Tab

Note that you can filter by Lifecycle Environment and Content View.

Applying Errata
How Errata is applied to a Content Host(s) depends on whether the Errata is installable.

If the Errata is already installable then the Errata is applied to the Content Host(s).
If the Errata is not installable then an Incremental Update is generated. An Incremental Update creates a point release of
the Content View with the Errata included. The Errata can also be applied to the Content Host(s) as part of this process.

There are two ways to apply Errata:

A single Errata can be applied to one or more Content Hosts
Several Errata can be applied to one or more Content Hosts via a bulk operation

Applying a Single Errata
To apply a single Errata:

Navigate to: Content > Errata
Click on an Errata ID
Click on the Content Host tab
Select the desired Content Hosts
Click “Apply to Hosts”
Confirm the action

Applying Several Errata
To apply several Errata:

Navigate to: Content > Errata
Select the desired Errata
Click “Apply Errata”
Select the intended Content Hosts
Click “Next”
Confirm the action

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Glossary
The following terms are used throughout this document, and are important for the users understanding of Katello.

Activation Key
A registration token which can be used in a kickstart file to control actions at registration. These are similar to Activation Keys
in Spacewalk, but they provide a subset of features because after registration, Puppet takes control of package and
configuration management.
Application Lifecycle Environment
Steps in a promotion path through the Software (Development) Life Cycle (SDLC). Content (packages, puppet modules) can be
moved through lifecycle environments via content view publishing/promotion. Traditionally these environments are things like

Development -> Test -> Production. Channel cloning was used to implement this concept for this in Spacewalk.
Attach
Associating a Subscription to a Host which provides access to RPM content.
Capsule
An additional “server” that can be used in a Katello deployment to facilitate content federation and distribution in addition to
other localized services (Puppet master, DHCP, DNS, TFTP, and more).
Change Set
Set of packages and puppet modules which are promoted between Application Lifecycle Environments. Katello records the
progress of changesets as they promoted. Katello also provides audit capabilities to review how environments have changed
over time.
Compute Profile
Default attributes for new virtual machines on a compute resource.
Compute Resource
A virtual fabric, or cloud infrastructure, where hosts can be deployed by Katello. Examples include RHEV-M, OpenStack, EC2,
and VMWare.
Content
Software packages (RPMS), Package Groups, Errata, and Puppet modules. These are synced into the Library and then
promoted into Lifecycle Environments via Content Views in order to be used/consumed by Hosts.
Content Delivery Network (CDN)
The mechanism to deliver Red Hat content in a geographically co-located fashion. For example, content which is synced by a
Katello in Europe will pull content from a source in Europe.
Content View
A definition of content that combines products, packages, errata and Puppet modules, with capabilities for intelligent filtering
and snapshotting. Content Views are a refinement of the combination of channels and cloning from Spacewalk.
External Node Classifier
A Puppet construct that provides additional data for a Puppet master to be used for configuring Hosts. Foreman acts as an
External Node Classifier to Puppet Masters in a Satellite deployment.
Facter
A program that provides information (facts) about the system on which it is run (eg: total memory, operating system version,
architecture, etc.) Facter facts can be used in Puppet modules in order to enable specific configurations based on Host data.
Hammer
The command line tool for Katello. Hammer can be used as a standard cli (and used in scripts) and can also be used as a shell
in the same way that spacecmd, virsh and others work.
Host
A system, either physical or virtual, which is managed by Katello.
Host Group
A template for how a Host should be built. This includes the content view (which defines the available RPMs and Puppet
modules), and the Puppet classes to apply (which determines the ultimate software and configuration).
Location
A collection of default settings which represent a physical place. These can be nested so that a user can set up defaults, for
example, for Europe, which are refined by Tel Aviv, which are refined by DataCenter East, and then finally by Rack 22.
Library
The Library is the single origin of all content which can be used. If you are an Information Technology Infrastructure Library
(ITIL) shop, it is your definitive media library.
Manifest
The means of transferring subscriptions from a Subscription Provider (such as the Red Hat Customer portal) to Katello. This is
similar in function to certificates used with Spacewalk.
Organization
A tenant in Katello. Organizations, or orgs, are isolated collections of hosts, content and other functionality within a Katello
deployment.
Permission
The ability to perform an action.
Product
A collection of content repositories.
Promote
The act of moving content from one Application Lifecycle Environment to another.
Provisioning Template
User defined templates for Kickstarts, snippets and other provisioning actions. These provide similar functionality to Kickstart
Profiles and Snippets in Katello.
Puppet Agent
An agent that runs on a Host that applies configuration changes to that Host.
Puppet Class
A Puppet Class is re-usable named block of puppet manifest, similar to a class in an object-oriented programming language.
Puppet classes must be included/instantiated in order to use their functionality. Puppet Classes can be parameterized - they
can take parameters when they are included/instantiated and those parameters may be used by the underlying manifest to

affect the ultimate configuration.
Puppet Manifest
A Manifest is a simple set of Puppet instructions. Manifests typically have the .pp extension. A manifest is much like a
procedure in programming terms.
Puppet Master
A Capsule component that provides Puppet manifests to Hosts for execution by the Puppet Agent.
Puppet Module
A Puppet Module is a set of Puppet manifests/classes, template files, tests and other components packaged together in a
specific directory format. Puppet Modules are typically associated with specific software (eg: NTP, Apache, etc) and contain
various classes used to assist in the installation and configuration of that software. Puppet Labs maintains a repository of
official and user-contributed modules called the Puppet Forge.
Pulp Node
A Capsule component that mirrors content. This is similar to the Spacewalk Proxy in Spacewalk. The main difference is that
content can be pre-staged on the Pulp Node before it is used by a Host.
Repository
A collection of content (yum repository, puppet repository).
Role
A collection of permissions that are applied to a set of resources (such as Hosts).
Smart Proxy
A Capsule component that can integrate with external services, such as DNS or DHCP.
Smart Variable
A configuration value that controls how a Puppet Class behaves. This can be set on a Host, a Host Group, an Organization, or a
Location.
Standard Operating Environment (SOE)
A controlled version of the operating system on which applications are deployed.
Subscription
The right to receive content and service from Red Hat. This is purchased by customers.
Syncing
Mirroring content from external resources into an organization’s Library.
Sync Plans
Scheduled execution of syncing content.
Usergroup
A collection of roles which can be assigned to a collection of users. This is similar to the Role in Spacewalk.
User
A human who works in Katello. Authentication and authorization can be done via built in logic, or using external LDAP or
kerberos resources.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Content Credentials
Content Credentials can be associated with Katello Products and Repositories. Two types of Content Credentials are
supported, each having a distinct purpose:

GPG Keys
GPG Keys are used by Content Hosts in order to verify the signature of packages that have been retrieved from a Repository
and ensure they haven’t been corrupted. For more information on GPG Keys see The GNU Privacy Guard.

SSL Certificates
SSL Certificates are used by the Katello server to sync content from upstream repositories that require client SSL
authentication.

Using Content Credentials
Create a Content Credential
Associate Content Credential with a Product
View Associated Products
View Associated Repositories

Create a Content Credential
To create a new Content Credential:

navigate to Content > Content Credentials
click Create Content Credential
Enter a Name and select a Type
You may either upload your Credential or paste its content into the text area.

When creating SSL Certificates for Products or Repositories that require them, a separate credential must be created for the
CA, cert, and key respectively.

Associate Content Credential with a Product
To add a Content Credential to a Product:

Note that adding a Credential to a Product adds it to all current and future repositories unless a repository already has a
Credential assigned. The Credential currently assigned to a Repository can be modified or overridden from the detail view of
the repository.

navigate to Content > Products
select the desired Product from the list
click Details
click the edit icon on the GPG Key, SSL CA Cert, SSL Client Cert, or SSL Client Key field
select the desired Content Credential

The steps for adding a Credential to a Repository are the same but performed from the repository’s detail view.

View Associated Products
To view all Products that have been assigned a Content Credential:

navigate to Content > Content Credentials
select the desired Credential from the list
click Products

View Associated Repositories
To view all Repositories that have been assigned a Content Credential:

navigate to Content > Content Credentials
select the desired Credential from the list
click Repositories

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Managing Content Hosts using Host Collections
Host Collections provide a mechanism to statically group multiple Content Hosts. This enables administrators to group Content
Hosts based on the needs of their organization. For example, Content Hosts could be grouped by function, department or
business unit.

Once a Host Collection is created, it can be used to perform various actions on the Content Hosts contained within it. This
includes actions such as the following:

Package installation, removal and update
Errata installation

Changing of assigned Lifecycle Environment or Content View

Definitions
Content Host

General Features
The following is a high-level summary of the Host Collection features:

Create a Host Collection
Add Content Hosts to a Host Collection
Copy a Host Collection
Perform actions on a Host Collection

Create a Host Collection
To create a new collection,

navigate to: Hosts > Host Collections
click New Host Collection

Note the following option:

Content Host Limit: This option will control how many Content Hosts are allowed to be added to the collection.

Add Content Hosts to a Host Collection
To add Content Hosts to a collection:

navigate to: Hosts > Host Collections
select the desired collection from the list
click Content Hosts
click Add
select the Content Hosts you would like to add
click Add Selected

Copy a Host Collection
Copying a Host Collection allows a user to quickly create a new collection that is a copy of an existing one.

To copy a Host Collection:

navigate to: Hosts > Host Collections
select the desired collection from the list
click Copy Collection
enter a name for the new collection
click Create

Perform Actions on a Host Collection
To perform an action on Content Hosts within a collection:

navigate to: Hosts > Host Collections
select the desired collection from the list
click Collection Actions
click on the action that you would like to perform

Note: clicking on an action will take the user to the appropriate Content Hosts Bulk Actions page, where all Content Hosts
associated with the collection have been selected. Click here, for more information on performing Content Host Bulk Actions

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Lifecycle Environments
What can a Lifecycle Environments be used for?

Hold content view versions.
To manage the lifecycle of Content Hosts.
Establish workflow containers and promote content views.

Definitions
Lifecycle Environment - containers for content view versions which are consumed by content hosts.

Library - a special kind of Lifecycle Environment that does not have a parent. The library serves as the main container for
synced content such as products, puppet modules, and published content views. Every organization has a library.
Subsequent environments are derived from the library. The first node of an environment is the Library, all future
environments are derived from the library and follow the library in promotion order.
Lifecycle Environment Path - Sequence of lifecycle environments that form the content promotion order.

General Workflow
First create a lifecycle environment connected to the library life cycle environment and promote content views to the new
lifecycle environment. A Content Host can now register directly to the promoted content view in the promoted environment or
library therein. Updates will be available as soon as new content is synced and promoted.

Viewing the list of lifecycle environments
From the web UI, navigate to:

Content -> Lifecycle Environments

Creating a lifecycle environment
Click on the + next to the Library or the prior environment to add a new path

Creating a lifecycle environment path
Click on the New Environment Path

View/Updating environment name
Click on the name of the environment.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Provisioning
See the Foreman manual for general information on configuring provisioning.

Templates
Katello ships a number of templates in addition to the standard Foreman ones. When using these templates, if a host has a
Host group with an Activation Key, it will register as a Content Host automatically.

Katello Kickstart Default - Kickstart template for Fedora, CentOS, RHEL, and other Red Hat-compatible operating
systems.

Katello Kickstart Default Finish - image-based provisioning
Katello Kickstart Default User Data - cloud-init template for EC2 and OpenStack
subscription_manager_registration - Snippet for registering a host for content

To customize any of the above templates, simply clone them and add your changes.

When you synchronize a repository with a distribution such as Fedora or CentOS, Katello will automatically create the
operating system and assign these default templates. You may change the defaults by going to Administer > Settings, and
selecting the Katello tab.

If provisioning hosts using a synced CentOS 8 repository, the AppStream repository is needed for Kickstart to work. To set this
up, create an “AppStream” repository within the same lifecycle environment and content view as the CentOS 8 repository and
sync it. Katello will automatically add this AppStream repo to the Kickstart file. After creating the host using CentOS 8 content,
double check that the generated Kickstart file mentions the AppStream repo. The host provisioning should proceed
automatically as expected.

Note: Currently, CentOS 8 Anaconda requires that the AppStream repository is specifically named “AppStream”. To get around
this, edit the Kickstart default provisioning template (or create a new one) to ensure this block:

will produce a line with repo --name AppStream --baseurl <AppStream repo url> .

For example, consider replacing that code block with:

Related CentOS 8 issue

<% @additional_media.each do |medium| -%>
repo --name <%= medium[:name] %> --baseurl <%= medium[:url] %> <%= medium[:install] ? ' --install' : '' %><%= proxy_string
%>
<% end -%>

<% @additional_media.each do |medium| -%>
<% if (medium[:url].include?("AppStream") and @host.operatingsystem.name == '< REPLACE ME >' and os_major >= 8) -%>
repo --name AppStream --baseurl <%= medium[:url] %>
<% else -%>
repo --name <%= medium[:name] %> --baseurl <%= medium[:url] %> <%= medium[:install] ? ' --install' : '' %><%= proxy_string
%>
<% end -%>
<% end %>

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Managing Puppet Content
Importing the Puppet Forge
The Puppet Forge is a collection of puppet modules written by the community which can be used to manage hosts in Katello.
These modules can be used in content views as described in the content views guide in order to configure the running hosts.

To import the puppet forge navigate to

Content > Products

Click on the +New Product button.

Once the product is created, select the product and click the Create Repository button. Fill out the repostitory as shown:

This can be done via the CLI:

The repository can now be synced.

Importing Puppet Modules from Git
In order to allow users to import puppet modules from Git repositories, Katello comes with a tool called ‘pulp-puppet-module-
builder’ from the pulp-puppet-tools RPM. This utility will be available on the Katello server but it can also be installed on
another machine if desired. By running the ‘pulp-puppet-module-builder’ against a Git repository, it will checkout the
repository, build all of the modules, and publish them in a structure Katello can synchronize.

The most common method is to run the utility on the Katello server itself and publish to a local file system directory and sync
against that directory.

This will checkout the ‘develop’ branch of the Git repository located at ‘git@mygitserver.com:mymodules.git’ and publish them
to the /modules directory. If you have SELinux enabled, in order to sync from the file system, you’ll need to apply a label to the
files in order for the system to access them. Two options are httpd_sys_r_content_t or pulp_tmp_t. Note: if you choose
httpd_sys_r_content_t then the webserver can also read the files so that may or may not be good. One way to apply these
labels would be to use the chcon command.

Next, from within Katello, simply set the url on your Puppet Repository to ‘file://modules’. You can now sync the Repository just
like any other Repository.

If you are running this on a remote machine, you will need to publish the containing to folder to a location accessible by HTTP
or HTTPS.

hammer product create
 --organization "Default Organization"
 --name Puppet

hammer repository create
 --organization "Default Organization"
 --product Puppet
 --name forge
 --content-type puppet
 --url "https://forge.puppetlabs.com/"

mkdir /modules
chmod 755 /modules
pulp-puppet-module-builder --output-dir=/modules --url=git@mygitserver.com:mymodules.git --branch=develop

Then in Katello, simply enter ‘http://HOSTNAME/modules/’ for the Repository url and sync it like you normally would.

mkdir /var/www/html/modules/
chmod 755 /var/www/html/modules/
pulp-puppet-module-builder --output-dir=/var/www/html/modules --url=git@mygitserver.com:mymodules.git --branch=develop

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Red Hat Content
Katello can be used to manage content associated with Red Hat products based upon available subscriptions. This includes
content such as RPMs, package groups, errata and distributions.

Definitions
Subscription Manifest - An archive file containing certificates and data that represent the subscriptions that are available.
A subscription manifest is created and downloaded from the Red Hat Customer Portal.
Repository - Collection of content (either rpm or puppet).

Product - Collection of repositories (content hosts attach to a product).
Library - The initial lifecycle environment where repositories are created. Content that is synced or uploaded lands in the
library.

General Workflow
The following is a high-level summary of the workflow:

Create a subscription manifest using the Red Hat Customer Portal
Import the subscription manifest
Enable Red Hat repositories
Synchronize repositories
Schedule repository synchronization
Attach a content host to a product for Red Hat content

Create a Subscription Manifest Using the Red Hat
Customer Portal
If you are a Red Hat customer, you should have access to the Red Hat Customer Portal to create and download a subscription
manifest. Once created, the manifest can be imported in to a Katello Organization.

To access the Red Hat Customer Portal, click here

For details on how to create a subscription manifest, click here

Import the Subscription Manifest
Importing a subscription manifest will allow for Red Hat content associated with purchased subscriptions to be enabled and
synchronized to Katello.

To import a manifest,

navigate to: Content > Red Hat Subscriptions
click Choose File
navigate to the file containing the manifest (e.g. manifest.zip)
click Open
click Upload

Enable Red Hat Repositories
Once a subscription manifest is imported, access is available to potentially hundreds of Red Hat Repositories (e.g. Red Hat
Enterprise Linux Server, Red Hat Enterprise Virtualization…etc). This process allows you to select only those that you are
interested in for your enterprise.

To enable Red Hat repositories,

navigate to: Content > Red Hat Repositories
select the content type: RPMs, Source RPMs, Debug RPMs, Beta, ISOs or Other
select one or more Red Hat products (e.g. Red Hat Enterprise Linux Server)
select one or more Repsitory Sets (e.g. Red Hat Enterprise Linux 6 Server (RPMs))
select one or more Repositories (e.g. Red Hat Enterprise Linux 6 Server RPMs x86_64 6Server)

Note:

When enabling a RHEL repository, Red Hat recommends selecting the Server repo (e.g. 6Server, 5Server) versus a
specific release (e.g. 6.2). When a specific release is necessary, the preferred way is to create a Content View with filters
that narrow the content to the desired version (e.g. 6.2)
If you plan to provision content hosts, be sure to enable both the RPM and Kickstart repositories.

Synchronize Repositories
Synchronizing a repository will retrieve all associated content and mirror the content in the Katello Library lifecycle
environment.

To sync multiple repositories as well as track their progress,

navigate to: Content > Sync Status
expand the desired products
select the repositories to sync
click Synchronize Now

Schedule Repository Synchronization
Creating a Sync Plan
Sync plans provide the ability to schedule repository synchronization on a daily, weekly or a monthly basis. Sync plans can be
applied individually or to a set of repositories.

To create a Sync Plan:

navigate to: Content > Sync Plans
click New Sync Plan on the upper right

Note the following options:

Start Date and Start Time: specify the day of the week/month and time of the day to run the recurring syncs. For
example, a sync plan that starts on Sunday 2014-04-06 at 2:30 will occur every Sunday at 2:30 every week if it has a
weekly interval. If on a monthly interval it would sync every month on the 6th day at 2:30.

Assigning a Sync Plan to a Red Hat Product
To assign a sync plan to a product,

navigate to Content > Sync Plans
select your Sync Plan
click Products
click Add
select the products that you want to add
click Add Selected on the upper right

Attach a Content Host to a Product for Red Hat Content
To read about registering a content host and subscribing it to a product, click TODO.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

SUSE Content
Katello can be used to manage content associated with SUSE products. This includes content such as RPMs, errata.

There are two different ways to use Katello to get manage SUSE products / repositories:

1. Use foreman_scc_manager
2. Use the smt tool

Definitions

Repository - Collection of content (either rpm).
Product - Collection of repositories (content hosts attach to a product).
Library - The initial lifecycle environment where repositories are created. Content that is synced or uploaded lands in the
library.

Manage SUSE Content using the foreman_scc_manager
To manage SUSE Content witht the foreman_scc_manager you need to have an SUSE SCC account

General Workflow
Install the foreman_scc_manager
Set up the connection to your SCC account.
Synchronize the list of available SUSE products.
Select the products and sub-products which you want to add to Katello (Content > Products). This creates the products
and all associated repositories.
Synchronize the created repositories in Content > Products

Installation
The installation of the foreman_scc_manager can be started with the following command. This will restart your Foreman!

Usage
First of all, you need to add your SUSE SCC account. Use the button “Add SCC account” on the page “Content > SUSE
Subscriptions” and configure your account. Verify that your account is configured correctly and the SUSE SCC portal is
reachable with “Test Connection”.

The next step is to select the action “Sync” in the “Actions” drop down list. This will start the process to synchronize all available
products for your SCC account.

 yum install tfm-rubygem-foreman_scc_manager

Select the products which you want to include to Katello by the selecting the “Select products” in the “Actions” drop down list.
This action will take some time as it will create a product and all repositories of each selected SUSE product.

After the synchronization task (see Monitor > Tasks) is complete, you will see the list of selected products and its repositories
in “Content > Products”. Please keep in mind, that you need to sync the repositories before you can actually use them. Feel
free to remove repositories of certain products which you don’t need.

Manage SUSE Content via the smt tool
General Workflow
The following is a high-level summary of the workflow:

Set up SUSE account and smt server
Set up the smt mirroring and Content
Create Products and Repositories

Set up SUSE account and SMT server
Assuming you have an SCC account, setup the SMT server, click here for more documentation.

Install smt

A TUI will pop up and you are going to have to add credentials from your account , found in scc.suse.com, as shown in
screenshot below

 # zypper install smt
 # yast smt-server

Click ok and proceed with the steps provided, it will finish up and exit

Set up the SMT Content and mirroring
On a SLES 12 Box

Sync repo data

List Repositories

Install the repositories you need to mirror via the smt-repos -e flag. For example to mirror SLES12-SP3-Pool

Check the enabled repos

Mirror the repositories

This should install an apache2 on that host

You should be able to navigate to the mirror by browsing to http://<fqdn>/repo/

Create Products and Repositories
Follow the steps listed here to create Products and Repositories
Follow the steps listed on the same link as above to create a yum repository with the repository url pointing to the
appropriate location. For example http://<fqdn>/repo/SUSE/Products/SLE-SERVER/12-SP3/x86_64/product/

smt-sync

smt-repos

smt-repos -e SLES12-SP3-Pool

smt-repos -o

smt-mirror

service apache2 restart

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Setup Remote Databases in Foreman with
Katello Plugin Installed
Foreman with Katello plugin can be installed with remote databases for both postgresql and mongo. These instructions are for
a Foreman with Katello plugin server, where remote databases are currently supported. This guide will refer to the server as
“Foreman”, with the assumption that the Katello plugin is installed.

High level

There are two ways to deploy Foreman with remote databases:

1. Fresh install
prepare Postgres server with databases for Foreman and Candlepin and dedicated users owning them
prepare Mongo DB with user owning the pulp_database
prepare box where the Foreman will be installed and make sure the databases are accessible from the box
run foreman-installer with right parameters pointing to the databases

2. Migration of existing Foreman installation
prepare Postgres server with databases for Foreman a Candlepin and dedicated users owning them
prepare Mongo DB with user owning the pulp_databse
make sure the databases are accessible from the box where Foreman is installed
shut down the services except the dbs you want to move (mongod, postgresql)
dump the DBs
restore the DBs on remote servers
run foreman-installer with right parameters pointing to the databases. It re-configures the databases and start all
the services with new DB locations

In either scenario, both of the databases don’t have to be remote. You can opt to use only a remote mongo database or only a
remote postgresql database. Both postgresql and mongo databases can be on the same host, but this isn’t recommended due
to the amount of resources mongo can use.

Prepare remote Postgres
GOAL: To use remote Postgres database with Foreman we have to:

be able to access the databases from foreman box
the database user we use to connect to the database needs to own the database, i.e. it can create, alter and delete the
tables, indexes and constraints. Note it is not required to be able to create the database itself.

Install Postgres
Warning: This is just minimal testing setup which is not suitable for production, please adjust the settings to your environment
as needed.

Assume our postgres server has hostname postgres.example.com .

First, we install postgresql.

Now we need to make Postgres listen to inbound connections, please adjust these parameters to your own networking and
security requirements.

Edit /var/lib/pgsql/data/postgresql.conf . Uncomment listen_address and modify its value to look like:

The next step we need to take is to add a proper client authentication for remote client to our postgres server. To achieve the
same, edit /var/lib/pgsql/data/pg_hba.conf . Append the following line at the end of the file

Now restart the postgres service for changes to take effect

Create the databases
Switch the user role to postgres and start postgres client

Once inside the client, we need to create two databases and dedicated roles, one for foreman and one for candlepin.

yum install -y postgresql-server postgresql-contrib
postgresql-setup initdb
systemctl enable --now postgresql

listen_address = "*"

host all all <katello.example.com ip>/24 md5

systemctl restart postgresql

su - postgres -c psql

Test it works
From katello.example.com test the DB is accessible:

If there are no errors we are done with database preparation.

Prepare remote Mongo
GOAL: To use remote Mongo database with Foreman we have to:

be able to access the databases from foreman box
the database user we use to connect to the database needs to own the database

Install Mongo DB
Warning: This is just minimal testing setup which is not suitable for production.

Assume our Mongo server has hostname mongo.example.com . Install and enable Mongo server

Enable authentication in /etc/mongod.conf

Enable and start the service

Create Pulp user and database

Test it works
From katello.example.com test the mongo DB is accessible:

If there are no errors we are done with database preparation.

Fresh install
Install katello package
We assume the box where the Foreman server will be installed has hostname katello.example.com .

Follow the documentation to install the katello package and do not run foreman-installer. We need to use the remote
database flags with the installer. Use the following steps once the katello rpm is installed.

Prepare remote databases

CREATE USER "foreman" WITH PASSWORD '<FOREMAN_PASSWORD>';
CREATE USER "candlepin" WITH PASSWORD '<CANDLEPIN_PASSWORD>';
CREATE DATABASE foreman OWNER foreman;
CREATE DATABASE candlepin OWNER candlepin;

PGPASSWORD='<FOREMAN_PASSWORD>' psql -h postgres.example.com -p 5432 -U foreman -d foreman -c "SELECT 1 as ping
"

PGPASSWORD='<CANDLEPIN_PASSWORD>' psql -h postgres.example.com -p 5432 -U candlepin -d candlepin -c "SELECT 1 as
ping"

yum install -y centos-release-scl
yum install -y rh-mongodb34-syspaths

auth=true

systemctl enable --now mongod

mongo admin -u admin -p admin --eval "db.createUser({user:'pulp',pwd:'<PULP_PASSWORD>',roles:[{role:'dbOwner', db:'pulp_datab
ase'},{ role: 'readWrite', db: 'pulp_database'}]})"

mongo --host mongo.example.com -u pulp -p <PULP_PASSWORD> --port 27017 --eval 'ping:1' pulp_database

Follow the instructions to prepare remote mongo and prepare remote postgres to make the remote database servers ready
for installation.

Run the installer
To install and configure Foreman we just need to run

Note: for more related options and tips on SSL configuration see Full list of options

Migration of existing Foreman
Migrating an existing installation to remote databases can take time, so plan for some outage time (length depending on
database size) while a backup is taken and the databases are migrated.

In this example, we assume that Foreman was installed and is running on katello.example.com .

Prepare remote databases
Follow the instructions to prepare remote mongo and prepare remote postgres to make the remote database servers ready
for migration.

Stop the Foreman server
Stop the Foreman related services to minimize risk of the data changes during the migration

Dump databases
Dump the local databases

Restore data in remote databases
You can restore the SQL dumps to the remote databases from the foreman system.

Now the copy of the local database is also at the remote locations.

Update the configuration
To update existing configuration of Foreman we just need to run

foreman-installer --scenario katello \
 --foreman-db-host postgres.example.com \
 --foreman-db-password <FOREMAN_PASSWORD> \
 --foreman-db-database foreman \
 --foreman-db-manage false
 --katello-candlepin-db-host postgres.example.com \
 --katello-candlepin-db-name candlepin \
 --katello-candlepin-db-password <CANDLEPIN_PASSWORD> \
 --katello-candlepin-manage-db false \
 --katello-pulp-db-username pulp \
 --katello-pulp-db-password <PULP_PASSWORD> \
 --katello-pulp-db-seeds “mongo.example.com:27017” \
 --katello-pulp-db-name pulp_database
 --katello-pulp-manage-db false

foreman-maintain service stop --exclude postgresql,rh-mongodb34-mongod

foreman-maintain backup online --skip-pulp-content --preserve-directory -y /tmp/migration_backup

PGPASSWORD='<FOREMAN_PASSWORD>' pg_restore -h postgres.example.com -U foreman -d foreman < /tmp/migration_backup
/foreman.dump
PGPASSWORD='<CANDLEPIN_PASSWORD>' pg_restore -h postgres.example.com -U candlepin -d candlepin < /tmp/migration_ba
ckup/candlepin.dump
mongorestore --host mongo.example.com --db pulp_database --username pulp --password <PULP_PASSWORD> /tmp/migration_ba
ckup/mongo_dump

The installer start services aside from the database related services. Everything should be up and ready at this point, and you
can clean up the local databases if you would like.

Full list of remote database related options in the installer
Use foreman-installer --full-help for all up-to-date installer options

Foreman database related:

Candlepin database related:

Mongo database related:

The actual option names may vary between versions. Check the actual naming with foreman-installer –full-help.

SSL configuration
Here is sample installer command that sets up Postgres databases with SSL verification. The Postgres server has its own CA.
The CA cert used by Candlepin needs to be stored in system trust (/etc/pki/java/cacerts) as there is no other way to pass it to
Candlepin

foreman-installer --scenario katello \
 --foreman-db-host postgres.example.com \
 --foreman-db-password <FOREMAN_PASSWORD> \
 --foreman-db-database foreman \
 --foreman-db-manage false \
 --katello-candlepin-db-host postgres.example.com \
 --katello-candlepin-db-name candlepin \
 --katello-candlepin-db-password <CANDLEPN_PASSWORD> \
 --katello-candlepin-manage-db false \
 --katello-pulp-db-username pulp \
 --katello-pulp-db-password <PULP_PASSWORD> \
 --katello-pulp-db-seeds “mongo.example.com:27017” \
 --katello-pulp-db-name pulp_database \
 --katello-pulp-manage-db false

--foreman-db-manage if enabled, will install and configure the database server on this host
--foreman-db-database Database 'production' database (e.g. foreman)
--foreman-db-host Database 'production' host
--foreman-db-password Database 'production' password, default is randomly generated
--foreman-db-pool Database 'production' size of connection pool (current: 5)
--foreman-db-port Database 'production' port
--foreman-db-root-cert Root cert used to verify SSL connection to postgres
--foreman-db-sslmode Database 'production' ssl mode (disable|allow|prefer|require|verify-full)
--foreman-db-username Database 'production' user (e.g. foreman)

--katello-candlepin-db-host Host with Candlepin DB
--katello-candlepin-db-name Name of the Candlepin DB
--katello-candlepin-db-password Candlepin DB password
--katello-candlepin-db-port Port accepting connections to Candlepin DB
--katello-candlepin-db-ssl Boolean indicating if the connection to the database should be over
--katello-candlepin-db-ssl-verify Boolean indicating if the SSL connection to the database should be verified
--katello-candlepin-db-user Candlepin DB user
--katello-candlepin-manage-db Boolean indicating whether a database should be installed, this includes db creation and user

--katello-pulp-db-ca-path The ca_certs file contains a set of concatenated "certification authority" certificates,
--katello-pulp-db-name Name of the database to use
--katello-pulp-db-password The password to use for authenticating to the MongoDB server
--katello-pulp-db-replica-set The name of replica set configured in MongoDB, if one is in use
--katello-pulp-db-seeds Comma-separated list of hostname:port of database replica seed hosts
--katello-pulp-db-ssl Whether to connect to the database server using SSL.
--katello-pulp-db-ssl-certfile The certificate file used to identify the local connection against mongod.)
--katello-pulp-db-ssl-keyfile A path to the private keyfile used to identify the local connection against mongod. If
--katello-pulp-db-unsafe-autoretry If true, retry commands to the database if there is a connection error.
--katello-pulp-db-username The user name to use for authenticating to the MongoDB server
--katello-pulp-db-verify-ssl Specifies whether a certificate is required from the other side of the connection, and
--katello-pulp-db-write-concern Write concern of 'majority' or 'all'. When 'all' is specified, 'w' is set to number of

foreman-installer -S katello \
 --foreman-admin-password changeme \
 --foreman-db-host postgres.example.com \
 --foreman-db-password foreman \
 --foreman-db-database foreman_2 \
 --foreman-db-root-cert /etc/pki/ca-trust/source/anchors/ca-chain.cert.pem \
 --foreman-db-sslmode verify-full \
 --katello-candlepin-db-host postgres.example.com \
 --katello-candlepin-db-name candlepin_2 \
 --katello-candlepin-db-password candlepin \
 --katello-candlepin-db-ssl true \
 --katello-candlepin-manage-db false

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Content View Import/Export
Content view import/export is one of the new features in Katello 3.9. This feature is for users who want the exact same
content view version on one Katello instance to be available on another Katello instance. The other Katello instances may or
may not have Internet access.

System administrators the ability to have fine-grained control over their content view versions, and they can have the same
content view on two or more Katello instances. Additional APIs now exist to allow for this, as well as new commands to the
hammer CLI tool.

This new feature works differently than the old export/import feature. The old feature is still available but has been

deprecated.

In earlier versions of Katello, you could only export yum repositories. You could export an entire content view version,
but this simply exported each yum repository in the version without any additional metadata.

API additions
Katello 3.9 allows users to publish content view versions with a list of packages. This overrides any filters already set on the
content view. It is meant for users who want to say “give me exactly what I want in this content view, with these exact RPMs
that cannot be substituted”. Errata will be pulled in based on the RPM list. For example, if you include “walrus-0.71.noarch.rpm”
and there is an errata that includes that exact package, the errata will be pulled in.

Here is an example. You would POST this to /katello/api/v2/content_views/<id>/publish as the repos_units parameter:

You can also set the major and minor versions when publishing. For example, if you called the /publish API with
major=55 and minor=4 , the content view would be version 55.4 .

Using major , minor , and repos_units , you can create a content view version that exactly matches the content on
another Katello, with the same version number.

Note

If you call /publish with the repos_units parameter set and also have content view filters set, the repos_units will override any filters.
This is intentional. A message will be logged to /var/log/foreman/production.log if the filter is overriden by the repos_units
parameter.

Hammer additions
The Hammer CLI tool has two new commands: hammer content-view version export and hammer content-view version
import .

Hammer export
The hammer content-view version export command gathers information about a content view version, and then creates a
tar file with that information. It will first create a json file with information about the content view. Here is an example:

[
 {
 "label": "zoo",
 "rpm_filenames": [
 "walrus-5.21-1.noarch.rpm",
 "gorilla-0.62-1.noarch.rpm"
]
 },
 {
 "label": "a_longer_label",
 "rpm_filenames": [
 "facter-2.4.6-3.el7sat.x86_64.rpm",
 "pulp-rpm-handlers-2.13.4.9-1.el7sat.noarch.rpm"
]
 }
]

Important

The errata_ids field is informational only. ALL errata in the repository are exported. A process during the import will then clean up
errata that are not used.

The hammer command will also create a tar file that contains all of the repositories listed. The final result of the command is a
tar file that contains two files: the json, and an inner tar file with all of the repositories. This tar file can be copied to a USB key
and used for the import command.

Note

Older versions of Katello relied on the Pulp export_distributor and group_export_distributor to create an ISO image with the yum
repositories. Katello would start a server-side task, create an ISO, and then copy the ISO to /var/lib/pulp/katello-export. This process
could take many hours and hundreds of GB of disk space for temporary files. Users can now use hammer to create the tar file. This
lets us avoid creating temporary copies of extremely large files.

Hammer import
The hammer content-view version import command uses the tar file created from the export command to create a content
view version with the same data. It will create a content view version with the same major and minor version numbers, and the
same repositories with the same packages and errata.

Before you run the import command for the first time, you will need to create the same products on the importing Katello that
you had on the exporting Katello. This is a step you will only need to do once. You will also need to create the same content
view, with same label. Again, you will only need to do this once.

The import command will synchronize the packages from the export tar file into Library. It will then call the /publish API and
create a new content view version using those packages.

Important

You will need to make sure Katello and Pulp can both read the tar file. If it cannot, you may get an error. The error will be logged in
/var/log/foreman/production.log for Katello, or in /var/log/messages for Pulp. Ownership of the directory and files should be Apache
with system_u:object_r:httpd_sys_rw_content_t:s0 as the SELinux context.

{
 "name": "my-cv",
 "major": 1,
 "minor": 0,
 "repositories": [
 {
 "id": 2,
 "label": "zoo",
 "content_type": "yum",
 "backend_identifier": "1-my-cv-v1_0-da3c4462-7343-4e30-bbd8-a802aa64be63",
 "relative_path": "Default_Organization/content_views/my-cv/1.0/custom/test/zoo",
 "on_disk_path": "/var/lib/pulp/published/yum/https/repos/Default_Organization/content_views/my-cv/1.0/custom/test/zoo",
 "rpm_filenames": [
 "bear-4.1-1.noarch.rpm",
 "camel-0.1-1.noarch.rpm",
 "cat-1.0-1.noarch.rpm",
 "cheetah-1.25.3-5.noarch.rpm",
 "chimpanzee-0.21-1.noarch.rpm",
 "cockateel-3.1-1.noarch.rpm",
 "cow-2.2-3.noarch.rpm",
 "crow-0.8-1.noarch.rpm",
 "dog-4.23-1.noarch.rpm",
 "dolphin-3.10.232-1.noarch.rpm",
 "duck-0.6-1.noarch.rpm",
 "elephant-8.3-1.noarch.rpm",
 "fox-1.1-2.noarch.rpm",
 "frog-0.1-1.noarch.rpm",
 "giraffe-0.67-2.noarch.rpm",
 "gorilla-0.62-1.noarch.rpm",
 "horse-0.22-2.noarch.rpm",
 "kangaroo-0.2-1.noarch.rpm",
 "lion-0.4-1.noarch.rpm",
 "mouse-0.1.12-1.noarch.rpm"
],
 "errata_ids": [
 "RHEA-2012:0003",
 "RHEA-2012:0001",
 "RHEA-2012:0004",
 "RHEA-2012:0002"
]
 }
]
}

Note

The import process will import all errata from an export. It will then purge any errata that are not associated with packages. This is
the same process that is used today when copying RPMs between repositories.

Import/Export Best Practices
The intent of import/export is to capture a content view version on one Katello, and then re-create it on another Katello. The
feature does not replicate a standard operating environment (SOE) from one Katello to another. A standard operating
environment includes a manifest file, content view definitions, products, repositories, activation keys, host groups, and other
information.

Please use foreman-ansible-modules or Hammer scripts to define your SOE in a reproducible way. Once you have a
reproducible SOE, you can then use import/export to keep your Katello updated.

Note

To ensure proper SELinux contexts on the importing tar and files, use the /var/lib/pulp/katello-export directory on the importing
Katello. This directory already has the correct permissions and correct SELinux labels, and was created specifically as a landing place
for files not created by Pulp that Pulp needs to read or write. If choosing to use a different directory please see the alert at the end of
the import section for proper permissions and SELinux context settings.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Source RPMs
Listing source RPMs with Hammer CLI

SRPM info can be retrieved in a few ways: hammer srpm list and hammer srpm info .

The hammer srpm list command lists source RPMS by default across the entire Katello server. This can be filtered down
by organization, product, repository, content-view and lifecycle environment.

The hammer srpm info command gathers information about a source RPM. Returning ID, Name, Version, Architecture,
Epoch, Release, Filename, and Description.

Uploading SRPMs with Hammer CLI
Create a product and repository
First we want to create a product:

Next we want to grab our product id for the repository creation step:

Next we will create our repo:

Now we want to grab our repo id for the upload step:

Upload a source RPM into a repository
Now that we have our repository, we will upload a source RPM using the following command:

Retrieving the repository info will show that the SRPM was uploaded. Note the content counts.

hammer product create --name Zoo --organization-id 1

Product created.

hammer product list --organization-id 1

---|------|-------------|----------------------|--------------|-----------
ID	NAME	DESCRIPTION	ORGANIZATION	REPOSITORIES	SYNC STATE
1 | Zoo | | Default Organization | 0 |
---|------|-------------|----------------------|--------------|-----------

hammer repository create --product-id 1 --organization-id 1 --content-type yum --name source_rpms --publish-via-http yes

Repository created.

hammer repository list

---|-------------|---------|--------------|----
ID	NAME	PRODUCT	CONTENT TYPE	URL
1 | source_rpms | Zoo | yum |
---|-------------|---------|--------------|----

hammer repository upload-content --content-type srpm --id 1 --product-id 1 --path /root/garmindev-0.3.4-9.el7.src.rp
m

Successfully uploaded file 'garmindev-0.3.4-9.el7.src.rpm'

hammer repository info --id 1

ID: 1
Name: source_rpms
Label: source_rpms
Organization: Default Organization
Red Hat Repository: no
Content Type: yum
Mirror on Sync: yes
URL:
Publish Via HTTP: yes
Published At: http://centos7-katello-nightly.area51.example.com/pulp/repos/Default_Organization/Library/custom/Zoo/source_rpm
s/
Relative Path: Default_Organization/Library/custom/Zoo/source_rpms
Download Policy: immediate
Product:
 ID: 1
 Name: Zoo
GPG Key:

Sync:
 Status: Not Synced
Created: 2019/08/21 15:37:14
Updated: 2019/08/21 15:37:16
Content Counts:
 Packages: 0
 Source RPMS: 1
 Package Groups: 0
 Errata: 0
 Module Streams: 0

Listing source RPMS
To list source rpms across the entire Katello server run this command:

Filter down by organization, product, repository, content-view and lifecycle environment by passing in the appropriate
flags.

Getting information on a source RPM
To grab information on a source RPM run this command:

Uploading SRPMs with the Repositories API
To upload source RPMs with the content_type parameter to the import_uploads API endpoint

To see all of the available options to use with the new Source RPM API

hammer srpm list

---|-----------|------------------------------
ID	NAME	FILENAME
1 | garmindev | garmindev-0.3.4-9.el7.src.rpm
---|-----------|------------------------------

hammer srpm info --id 1

ID: 1
Name: garmindev
Version: 0.3.4
Architecture: src
Epoch: 0
Release: 9.el7
Filename: garmindev-0.3.4-9.el7.src.rpm
Description: Drivers for communication with Garmin GPS devices

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Certificates
Checking for Validity
During installation any certificates for Katello are checked for validity. The same can be performed manually with katello-certs-
check . Doing so can be useful when looking into SSL related issues or configuring custom certificates.

katello-certs-check -c ~/path/to/server.crt\
 -k ~/path/to/server.key\
 -b ~/path/to/cacert.crt

If you would like to configure Katello with a set of invalid certs, the validation check can be skipped by passing --certs-skip-
check to the installer.

Custom Server Certificates
New Katello Installations

--certs-server-ca-cert is the CA used for issuing the server certs. This CA gets distributed to content hosts and Smart Proxies.

For Smart Proxies the following options are passed to foreman-proxy-certs-generate :

The rest of the procedure is identical to the default CA setup.

Existing Katello Installations
The first run of foreman-installer --scenario katello uses the default CA for both server and client certificates. To enforce the
custom certificates to be deployed, one needs to set --certs-update-server to update the server certificate. --certs-update-
server-ca should be given when updating the server CA in order for katello-ca-consumer-latest.noarch.rpm to be regenerated.

After the server CA changes the new version of the katello-ca-consumer RPM needs to be installed on content hosts:

Any custom CA on the server needs to be used on the server certificates of any Smart Proxies as well. The certificates for Smart
Proxies are generated by foreman-proxy-certs-generate .

After generation the utility will provide the necessary details on how to copy the new certificates to and run the installer on the
Smart Proxy.

Updating Certificates
On the Katello server
To regenerate the server certificates when using the default CA or enforce deploying new certificates for the custom server CA
the installer may be run in this way:

To regenerate all the certificates used in the Katello server use the --certs-update-all flag. This will generate and deploy the
certificates as well as restart corresponding services.

On a Smart Proxy
For updating the certificates on a Smart Proxy pass the same options (--certs-update-server or --certs-update-all) to foreman-
proxy-certs-generate . A tarball is generated containing the new certs and output will be shown indicating how to transfer it to

foreman-installer --scenario katello\
 --certs-server-cert ~/path/to/server.crt\
 --certs-server-key ~/path/to/server.key\
 --certs-server-ca-cert ~/path/to/cacert.crt

foreman-proxy-certs-generate --foreman-proxy-fqdn "$FOREMAN_PROXY"\
 --certs-tar ~/$FOREMAN_PROXY-certs.tar\
 --server-cert ~/path/to/server.crt\
 --server-key ~/path/to/server.key\
 --server-ca-cert ~/cacert.crt

foreman-installer --scenario katello\
 --certs-server-cert ~/path/to/server.crt\
 --certs-server-key ~/path/to/server.key\
 --certs-server-ca-cert ~/path/to/cacert.crt\
 --certs-update-server --certs-update-server-ca

rpm -Uvh http://katello.example.com/pub/katello-ca-consumer-latest.noarch.rpm

foreman-proxy-certs-generate --foreman-proxy-fqdn "$FOREMAN_PROXY_CONTENT"\
 --certs-tar ~/$FOREMAN_PROXY_CONTENT-certs.tar\
 --server-cert ~/path/to/server.crt\
 --server-key ~/path/to/server.key\
 --server-ca-cert ~/cacert.crt\
 --certs-update-server

foreman-installer --scenario katello --certs-update-server

the Smart Proxy and run the installer.

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

HTTP Proxies
HTTP Proxy Support
Katello enables external HTTP proxies (provided by utilities such as squid) for repository operations such as synchronization.

HTTP proxies can be created and then assigned to a product though bulk selection as well as for each individual repository.
Additionally, Katello provides HTTP proxy policies for products or repositories. Policies include:

Using the global HTTP proxy (the default)
Using a specified HTTP proxy other than the global HTTP proxy

Not using an HTTP proxy

Creation
There are two ways of creating a HTTP Proxy for use in Katello: through the Foreman installer or the Foreman UI.

Creating an HTTP Proxy with the Foreman Installer
Additional installer parameters are provided for creating an HTTP proxy:

Creating an HTTP Proxy through the web UI
navigate to: Infrastructure > HTTP Proxies
click New HTTP Proxy

Name: This required option is used to identify the HTTP proxy.
Url: This required option is the URL of the proxy. Note that the scheme should be included. For example:
“http://proxy.example.org:8888”
Username: This option is used for proxy authentication, if required.
Password: This option is used for proxy authentication, if required.

The provided field for Test Connection may be used to verify the proxy fields are set correctly. The field accepts a URL that a
GET request will be sent to via the proxy configured in the form. If successful you will see a user notification such as:

If there is a problem with the proxy configuration, you will see an error notification similar to:

--katello-proxy-password Proxy password for authentication (default: nil)
--katello-proxy-port Port the proxy is running on (default: nil)
--katello-proxy-url URL of the proxy server (default: nil)
--katello-proxy-username Proxy username for authentication (default: nil)

Removal
To remove a HTTP Proxy:

navigate to: Infrastructure > HTTP Proxies
click Delete in the row of the proxy you want to remove

Bulk Applying HTTP Proxy Policies and HTTP Proxy
Selection
HTTP proxy policies and HTTP proxy selection can be selected for one or more products. The policies and proxy selection
propogates to all repositories contain in the products.

Selecting the Global Default Proxy
To apply the global default proxy policy to one or more products:

navigate to: Content > Products
Select the row checkbox for each product you want to assign the HTTP policy to
Click the Select Action dropdown
Select Manage Http Proxy
Accept the default selection Global Default (xxxx) . Note that the text within the parenthesis is the name of the HTTP
Proxy set as the global default.
Click Update

Selecting the No HTTP Proxy policy
To choose a policy where no HTTP proxy is used for one or more products:

navigate to: Content > Products
Select one or more products by clicking the row checkbox for each product you want to assign the HTTP policy for
Click the Select Action dropdown
Select Manage Http Proxy
Select the “No HTTP Proxy” selection.
Click Update

Selecting a Specific HTTP Proxy
To choose a specific HTTP proxy for one or more products:

navigate to: Content > Products
Select one or more products by clicking the row checkbox for each product you want to assign the HTTP policy for
Click the Select Action dropdown
Select Manage Http Proxy
Select the “Use specific HTTP proxy” policy selection.
A new drop down will appear with a list of all curently defined HTTP proxies. Select the proxy you want.
Click Update

Selecting a HTTP Proxy policy and HTTP Proxy for a new
Repository
For more information about creating a new repository see Creating a Repository. There are two fields on the new repostory
form for selecting the HTTP proxy policy and, if needed, a specific HTTP proxy.

Assigning the global default HTTP Proxy
By default, a new repository will be created with the “Global Default” policy. You can see this is the default selection in the Http
Proxy Policy selection.

Assigning the No HTTP Proxy policy
If you don’t want any http proxy to be used, click the Http Proxy Policy menu and select “No HTTP Proxy”.

Assigning a specific HTTP Proxy
If you want to assign a specific HTTP proxy to be used for the new repository, click the Http Proxy Policy . A new menu will
appear, presenting a list of all currently defined HTTP proxies. Select the wanted proxy and the new repository will use that
proxy.

Assigning a HTTP Proxy Policy and HTTP Proxy for an
existing Repository
To change the HTTP proxy policy or the HTTP proxy used by an existing repository:

navigate to: Content -> Products -> (the repository you want to modify)
under Sync Settings cick the form edit icon for the Http Proxy field. Note that the default display will show the current
HTTP proxy policy and the name of the proxy the policy enables
Menus for both the HTTP Proxy policy and, if you choose the “Use specific HTTP Proxy” policy, the HTTP Proxy appear
To save any changes, click the Save button
To ignore any changes, click the Cancel button

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Katello Troubleshooting
For general support information, see here.

Table of Contents
Sub-service Status
Tasks
Debug Certificate
FAQ

Sub-services status

Katello uses a set of back-end services to perform the actual job. The status of these services can negatively influence the whole
system and it’s one of the first things to check when some errors occur.

The status of back-end services can be found either from the Web UI on the /about page:

Alternatively, the hammer ping command can be used to get this information.

foreman-maintain tool can be used to restart Katello related services. See foreman-maintain --help for more details.

Tasks
Katello uses Foreman Tasks for orchestration between the underlying services (local database, Pulp, Candlepin…). The tasks are
modeled as Dynflow processes. When something goes wrong (and there might be many reasons for this happening), Dynflow gives
us the tools to recover from these errors to get to the consistent state.

Health checking
There are two properties used for identifying issues with a task:

state - what phase of execution is the task in, possible values are:
planning - the planning phase of the task is performed: the operations performed in this phase shouldn’t modify
anything outside Katello’s database. The execution of this phase happens in the web-process thread and usually should
not take more than few seconds
planned - the planning phase finished and the task is waiting for the executor process (foreman-tasks service) to pick it
up
running - the executor is performing the orchestration action, modifying the state of external services to converge to
the final state
paused - something went wrong during running the task and it’s waiting for the resolution (further details below)
stopped - the execution of the task finished (the success is determined by the result value)
result - how the task ended up (or is going to end up if we already know it)
pending - task is in the process of executing
success - no errors occurred during the execution
error - unresolved errors occurred during the execution
warning - there were errors during the execution, but they did not prevent the task from finishing or were skipped
manually (further details below).

To see all the tasks in the system, one can go to /foreman_tasks/tasks page. To see all the tasks that failed, one can search on
result = error :

Failed tasks include those in the ‘stopped’ or ‘paused’ state. The stopped tasks are already considered as resolved, there is no risk
of inconsistency. The tasks in the ‘stopped’ state and the ‘error’ result are usually those failed during the planning phase (usually
locking error or bad input data).

To see all the tasks requiring further assistance, filter on state = paused :

Dealing with paused task
Once the paused task is identified, one can investigate the problem causing the errors:

The resolution of the problem is dependent on the error details. The task may be resolvable by resuming the task: make sure the
sub-services are running (see Sub-services status for more details) and then click ‘Resume’ within the web interface.

If this still doesn’t help, one possible step is going to a Dynflow console (the button from task details takes you there):

Caution: Dynflow console is considered a low-level tool and should be used very carefully, ideally discussing other options before
using its features

If the failed task was taken care of by other means (performing the failed steps manually) or it was identified as not critical to the
whole task, one can skip the failed step and resume the task to continue. These tasks end up with warning result at the end, to
indicate there was some difficulty during the run.

Dealing with Long Running Tasks
In came cases, there might be an issue with sub-services that make it appear as if the task is running for too long without any
obvious evidence that something is occurring withing the task.

The first place to look in this case is filtering the tasks on state = running and looking at Running Steps in the task details:

In this case, the "start_time" => nil indicates that the task was not picked up by Pulp, which usually means some issues with running
the Pulp workers. See (see Sub-services status for more details).

One can also go to the Dynflow console for even more details: the suspended state means that the step is waiting for the external
task to finish - the suspended state itself doesn’t have to indicate any error:

If you’re sure the underlying services are running fine, depending on the type of task, there might be a possibility to cancel the
running step and possibly following dealing with paused tasks instead.

Locking
Foreman tasks provides a locking mechanism which is important to prevent the possibility of operations colliding that are being
performed concurrently on the same resource (such as synchronizing and deleting a repository at the same time).

When trying to run an operation on a resource that another task is already running, one can get Required lock is already taken by
other running tasks. :

A locked resource is one where another task that is related to the same resource is already running. Thus, the task being
attempted will result in that task being tried in running or paused state. This means that the error is triggered also in cases, where
there is a task with unresolved failure (see dealing with paused tasks for more details).

In rare cases, it might be hard to get into the stopped state. There is a possibility to unlock the resource in the running / paused
task. This will switch the task into stopped state, freeing the resources for other tasks. Caution: unlocking allows running other
tasks to run on potentially inconsistent data, which might lead into further errors. It’s still possible to go to the Dynflow console and
resume the tasks, even after using the unlock feature. There are two unlock-related buttons: Unlock and Force Unlock . The only
difference between these two is the second one is allowed even when the task is in running state, and therefore is potentially even
more dangerous than the Unlock button. See dealing with tasks running too long before attempting to use the Force Unlock
option.

Debug Certificate
Debug certificates (also called Ueber Certificates) can be used to unlock all the content for a given Organization. These are meant to
be used by sysadmins who are debugging issues with the Katello install.

Generating a Debug Certificate
To generate a debug certificate for a given Organization from the UI, navigate to the organizations page and click on the
organization for which you want a debug certificate. Click on the button to generate and download the certificate as highlighted
below:

To generate a debug certificate using the API see the API docs located on your server running at /apidoc .

In either case, you will get the Private Key and Certificate returned to you in a format such as :

Using Firefox to browse content
If you wish to use the certificate to browse content via Firefox, do the following:

1. Copy the contents of the above file from -----BEGIN RSA PRIVATE KEY----- to -----END RSA PRIVATE KEY----- inclusive to
a file called key.pem

2. Copy the contents of the above file from -----BEGIN CERTIFICATE----- to -----END CERTIFICATE----- inclusive to a file
called cert.pem

3. Run the following command to create a pkcs12 file:

4. Provide a password when prompted.
5. Using the preferences tab, import the resulting pfx file into your browser (Edit->Preferences->Advanced Tab -> View

Certificates -> Import)
6. Point your browser at http://[FQDN]/pulp/repos/[ORG_NAME]

To use curl to access the repository, you can provide –cert and –key options. Provided the cert is in ~/cert.pem and key in
~/key.cert , the following command will let you access any repository data in the organization. To check the access to a repository,

checking the availability of repodata/repomd.xml is usually a good idea (make sure key.pem and cert.pem are ‘'’absolute paths’’’
otherwise it silently fails):

Frequently Asked Questions
Can I use pulp-admin with Katello?

Key: -----BEGIN RSA PRIVATE KEY-----
<<<<DER ENCODED TEXT>>>>
-----END RSA PRIVATE KEY-----

Cert: -----BEGIN CERTIFICATE-----
<<<<DER ENCODED TEXT>>>>
-----END CERTIFICATE-----

openssl pkcs12 -keypbe PBE-SHA1-3DES -certpbe PBE-SHA1-3DES -export -in cert.pem -inkey key.pem -out [NAME].pfx -name [N
AME]

curl -k --cert ~/cert.pem --key ~/key.pem https://katello.example.com/pulp/repos/test/Dev/custom/zoo/base-two/repodata/repomd.xml

We do not encourage the use of pulp-admin because it has the potential to get data out of sync. However, pulp-admin can be
useful when troubleshooting Katello.

1. Install needed packages

2. Edit /etc/pulp/admin/admin.conf
3. Uncomment the ‘host:’ line and add your server’s hostname:

4. Run grep default_password /etc/pulp/server.conf to lookup the admin password

5. Use pulp-admin by specifying the admin username and password:

Using pulp-admin without password
Using the ‘pulp-admin login’ command does not function and is not supported with Katello in an attempt to limit access to the
certificate authoriity generated at installation time.

Katello 3.0 generates a client cert at installation time which allows usage of pulp-admin without specifying the username and
password. To use this:

1. mkdir ~/.pulp/
2. Copy the public client cert and private key to a file together:

3. Run pulp-admin without username and password:

How can I sync a repository like Katello does directly from the console?
Sometimes you want to debug why a synchronization of a repository from Katello is failing and rather than dig through log files and
error messages it can often be easier to try to sync the repo with the ‘‘grinder’’ tool which is what Katello uses to download
repositories. The tool can be ran from a terminal on your Katello server:

You now have a directory called sync-test off of your current working directory:

yum install -y pulp-admin-client pulp-rpm-admin-extensions

host: katello-hostname.example.com

sudo grep default_password /etc/pulp/server.conf
default_password: default password for admin when it is first created; this
default_password: rGox3G9QhfCRD8fTsNR7FxqdgbvfJfSJ

pulp-admin -u admin -p rGox3G9QhfCRD8fTsNR7FxqdgbvfJfSJ repo list

sudo cat /etc/pki/katello/certs/pulp-client.crt /etc/pki/katello/private/pulp-client.key > ~/.pulp/user-cert.pem

pulp-admin repo list

$ grinder yum --label=sync-test --url=https://fedorapeople.org/groups/katello/releases/yum/1.0/RHEL/6Server/x86_64/
grinder.RepoFetch: INFO fetchYumRepo() repo_label = sync-test, repo_url =
https://fedorapeople.org/groups/katello/releases/yum/1.0/RHEL/6Server/x86_64/, basepath = ./, verify_options = {}
grinder.RepoFetch: INFO sync-test, https://fedorapeople.org/groups/katello/releases/yum/1.0/RHEL/6Server/x86_64/,
Calling RepoFetch with: cacert=<None>, clicert=<None>, clikey=<None>, proxy_url=<None>, proxy_port=<3128>, proxy_user=<Non
e>,
proxy_pass=<NOT_LOGGED>, sslverify=<1>, max_speed=<None>, verify_options=<{}>, filter=<None>
....
grinder.ParallelFetch: INFO 5 threads are active. 8 items left to be fetched
grinder.ParallelFetch: INFO 4 threads are active. 4 items left to be fetched
grinder.ParallelFetch: INFO WorkerThread deleting ActiveObject
grinder.ParallelFetch: INFO Thread ending
grinder.ParallelFetch: INFO 3 threads are active. 3 items left to be fetched
grinder.ParallelFetch: INFO WorkerThread deleting ActiveObject
grinder.ParallelFetch: INFO Thread ending

$ ls sync-test/
converge-ui-devel-0.8.3-1.el6.noarch.rpm
elasticsearch-0.18.4-13.el6.noarch.rpm
katello-1.0.6-1.el6.noarch.rpm
katello-agent-1.0.6-1.el6.noarch.rpm
katello-all-1.0.6-1.el6.noarch.rpm
katello-certs-tools-1.1.7-1.el6.noarch.rpm
lucene3-contrib-3.4.0-2.el6.noarch.rpm
repodata
rubygem-actionmailer-3.0.10-3.el6.noarch.rpm
...

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Troubleshooting Content Hosts
Registration Issues
Starting with Katello 3.12, content hosts are required to have a unique UUID reported by subscription-manager when
registering. This UUID comes from the BIOS or virtualization layer and is unique in most cases. If a registering host reports a
UUID that matches an existing registration an error will be received on the client:

The DMI UUID of this host (ABF18D4C-2708-11B2-A85C-AA9890D228CC) matches other registered hosts: host-a.example.com, ho
st-b.example.com

Action should be taken in order to ensure that the reported UUID is unique. However, Katello provides two mechanisms to
provide a temporary solution so that the content host can be registered and receive updates while the underlying cause is
resolved.

Client-side DMI UUID override
The DMI UUID can be overridden on the content host itself by setting a custom fact value which will be uploaded by
subscription-manager.

First, generate a new UUID:

Take the generated UUID and place it into a JSON structure and save it to a file where subscription-manager can find it:

subscription-manager will now report this value to the Katello server

Registration should be successful at this point.

Server-side BIOS UUID override
If overriding the BIOS UUID from the client side (preferred) is not an option, Katello can be configured to automatically
generate a suitable UUID at registration-time. In order to do so, the problematic UUID must be noted from the registration
error received by the client. It can also be found in the server production.log

With the DMI UUID handy, navigate to Administer -> Settings -> Content in the UI. Find the setting named ‘Host Duplicate DMI
UUIDs’ and edit its value. The value must be in array format, ex: [‘ABF18D4C-2708-11B2-A85C-AA9890D228CC’] Multiple values
can be separated by commas.

After saving, any content hosts with the UUID(s) applied in the setting will have a new DMI UUID created when registering that
will persist when the host checks in. However, this value exists on the server only and is not pushed to the client.

[root@myhost ~]$ uuidgen
eae7fe44-8256-4072-813f-0e1d691f093c

echo '{"dmi.system.uuid": "eae7fe44-8256-4072-813f-0e1d691f093c"}' > /etc/rhsm/facts/uuid_override.facts

subscription-manager facts | grep dmi.system.uuid
dmi.system.uuid: eae7fe44-8256-4072-813f-0e1d691f093c

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Foreman v2Foreman v2

Foreman API v2 is currently the default API version.

Resources

Activation keys
Resource Description

GET /katello/api/activation_keys List activation keys

GET
/katello/api/environments/:environment_id/activation_keys

GET
/katello/api/organizations/:organization_id/activation_keys

POST /katello/api/activation_keys Create an activation key

PUT /katello/api/activation_keys/:id Update an activation key

DELETE /katello/api/activation_keys/:id Destroy an activation key

GET /katello/api/activation_keys/:id Show an activation key

POST /katello/api/activation_keys/:id/copy Copy an activation key

GET
/katello/api/activation_keys/:id/host_collections/available

List host collections the activation key does not belong to

GET /katello/api/activation_keys/:id/releases Show release versions available for an activation key

GET /katello/api/activation_keys/:id/product_content Show content available for an activation key

POST /katello/api/activation_keys/:id/host_collections

PUT /katello/api/activation_keys/:id/host_collections

PUT /katello/api/activation_keys/:id/add_subscriptions Attach a subscription

PUT /katello/api/activation_keys/:id/remove_subscriptions Unattach a subscription

PUT /katello/api/activation_keys/:id/content_override Override content for activation_key

Ansible Collections
Resource Description

GET /katello/api/ansible_collections List ansible_collections

GET List ansible_collections

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

Katello 3.14 Documentation

3.14

HOME

GET STARTED

GET HELP

GET INVOLVED

NEWS

1. Installation

1.1 Katello

1.2 Smart proxy

1.3 Clients

2. Upgrade

2.1 Katello

2.2 Smart proxy

2.3 Clients

3. Release Notes

4. CLI

5. User Guide

5.1 Activation Keys

5.2 Backup

5.3 Foreman proxy

5.4 Content

5.5 Content Hosts

5.6 Content Views

5.7 Disconnected

5.8 Docker Management

5.9 Email Notifications

5.10 Errata

5.11 Glossary

5.12 Content Credentials

5.13 Host Collections

5.14 Lifecycle Environments

5.15 Provisioning

5.16 Puppet Integration

5.17 Red Hat Content

5.18 SUSE Content

5.19 Remote Databases

5.20 Content View Import/Export

5.21 Source RPMs

6. Advanced

6.1 Certificates

6.2 HTTP Proxies

7. Troubleshooting

7.1 General

7.2 Content Hosts

8. API Documentation

9. Annotated Backend Requests

Repository Sync (default settings)
Request # 1:
POST /pulp/api/v2/repositories/scenario_test/actions/sync/

Backend Service: pulp

Description:

Request body

Response body

Request # 2: Poll Sync task
GET /pulp/api/v2/tasks/8b9c7591-4d1b-48b7-b37b-bce4fdc9c2fd/

Backend Service: pulp

Description:

Total Requests for this URL: 32

Request body

None

Response body

{
 "override_config": {
 "num_threads": 4,
 "validate": true
 }
}

{
 "spawned_tasks": [
 {
 "_href": "/pulp/api/v2/tasks/8b9c7591-4d1b-48b7-b37b-bce4fdc9c2fd/"
,
 "task_id": "8b9c7591-4d1b-48b7-b37b-bce4fdc9c2fd"
 }
],
 "result": null,
 "error": null
}

{
 "exception": null,
 "task_type": "pulp.server.managers.repo.sync.sync",
 "_href": "/pulp/api/v2/tasks/8b9c7591-4d1b-48b7-b37b-bce4fdc9c2fd/",
 "task_id": "8b9c7591-4d1b-48b7-b37b-bce4fdc9c2fd",
 "tags": [
 "pulp:repository:scenario_test",
 "pulp:action:sync"
],
 "finish_time": "2017-03-30T21:16:05Z",
 "_ns": "task_status",
 "start_time": "2017-03-30T21:16:05Z",
 "traceback": null,
 "spawned_tasks": [
 {
 "_href": "/pulp/api/v2/tasks/0837f608-4696-449a-811f-70ddabe59025/"
,
 "task_id": "0837f608-4696-449a-811f-70ddabe59025"
 }
],
 "progress_report": {
 "yum_importer": {
 "content": {
 "items_total": 0,
 "state": "FINISHED",
 "error_details": [

],
 "details": {
 "rpm_total": 0,
 "rpm_done": 0,
 "drpm_total": 0,
 "drpm_done": 0
 },
 "size_total": 0,
 "size_left": 0,
 "items_left": 0
 },
 "comps": {
 "state": "FINISHED"
 },
 "purge_duplicates": {
 "state": "FINISHED"
 },
 "distribution": {
 "items_total": 3,
 "state": "FINISHED",
 "error_details": [

],

],
 "items_left": 0
 },
 "errata": {
 "state": "FINISHED"
 },
 "metadata": {
 "state": "FINISHED"
 }
 }
 },
 "queue": "reserved_resource_worker-1@dev.example.com.dq",
 "state": "finished",
 "worker_name": "reserved_resource_worker-1@dev.example.com",
 "result": {
 "result": "success",
 "importer_id": "yum_importer",
 "exception": null,
 "repo_id": "scenario_test",
 "traceback": null,
 "started": "2017-03-30T21:16:05Z",
 "_ns": "repo_sync_results",
 "completed": "2017-03-30T21:16:05Z",
 "importer_type_id": "yum_importer",
 "error_message": null,
 "summary": {
 "content": {
 "state": "FINISHED"
 },
 "comps": {
 "state": "FINISHED"
 },
 "purge_duplicates": {
 "state": "FINISHED"
 },
 "distribution": {
 "state": "FINISHED"
 },
 "errata": {
 "state": "FINISHED"
 },
 "metadata": {
 "state": "FINISHED"
 }
 },
 "added_count": 15,
 "removed_count": 0,
 "updated_count": 0,
 "id": "58dd7595418a8a0648b9bc52",
 "details": {
 "content": {
 "size_total": 0,
 "items_left": 0,
 "items_total": 0,
 "state": "FINISHED",
 "size_left": 0,
 "details": {
 "rpm_total": 0,
 "rpm_done": 0,
 "drpm_total": 0,
 "drpm_done": 0
 },
 "error_details": [

]
 },
 "comps": {
 "state": "FINISHED"
 },
 "purge_duplicates": {
 "state": "FINISHED"
 },
 "distribution": {
 "items_total": 3,
 "state": "FINISHED",
 "error_details": [

],
 "items_left": 0
 },
 "errata": {
 "state": "FINISHED"
 },
 "metadata": {
 "state": "FINISHED"
 }
 }
 },
 "error": null,
 "_id": {
 "$oid": "58dd7594e6919db96421ea13"
 },
 "id": "58dd7594e6919db96421ea13"
}

Request # 3: Poll Publish task
GET /pulp/api/v2/tasks/0837f608-4696-449a-811f-70ddabe59025/

Backend Service: pulp

Description:

Total Requests for this URL: 12

Request body

None

Response body

{
 "exception": null,
 "task_type": "pulp.server.managers.repo.publish.publish",
 "_href": "/pulp/api/v2/tasks/0837f608-4696-449a-811f-70ddabe59025/",
 "task_id": "0837f608-4696-449a-811f-70ddabe59025",
 "tags": [
 "pulp:repository:scenario_test",
 "pulp:action:publish"
],
 "finish_time": "2017-03-30T21:16:05Z",
 "_ns": "task_status",
 "start_time": "2017-03-30T21:16:05Z",
 "traceback": null,
 "spawned_tasks": [

],
 "progress_report": {
 "scenario_test": [
 {
 "num_success": 1,
 "description": "Copying files",
 "step_type": "save_tar",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "8fa5d08e-3473-4127-80f6-223bee0a0409",
 "num_processed": 1
 },
 {
 "num_success": 1,
 "description": "Initializing repo metadata",
 "step_type": "initialize_repo_metadata",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "32cee4d1-6e51-419a-9833-5f2c88e3efd9",
 "num_processed": 1
 },
 {
 "num_success": 1,
 "description": "Publishing Distribution files",
 "step_type": "distribution",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "d62a1815-acd5-439c-b511-dcbd69edade4",
 "num_processed": 1
 },
 {
 "num_success": 8,
 "description": "Publishing RPMs",
 "step_type": "rpms",
 "items_total": 8,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "197b0894-07fd-470b-8bb4-5a55b9713d18",
 "num_processed": 8

 "num_processed": 8
 },
 {
 "num_success": 0,
 "description": "Publishing Delta RPMs",
 "step_type": "drpms",
 "items_total": 1,
 "state": "SKIPPED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "54795382-de70-4de3-a8ce-5f726b8f9cb2",
 "num_processed": 0
 },
 {
 "num_success": 3,
 "description": "Publishing Errata",
 "step_type": "errata",
 "items_total": 3,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "1996449c-9471-4988-b3ee-b7ceae0c6b41",
 "num_processed": 3
 },
 {
 "num_success": 3,
 "description": "Publishing Comps file",
 "step_type": "comps",
 "items_total": 3,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "f12472f5-4012-4112-afe0-49f57348e569",
 "num_processed": 3
 },
 {
 "num_success": 0,
 "description": "Publishing Metadata.",
 "step_type": "metadata",
 "items_total": 0,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "31efb1ef-a413-48be-99f2-7f4788a1cebd",
 "num_processed": 0
 },
 {
 "num_success": 1,
 "description": "Closing repo metadata",
 "step_type": "close_repo_metadata",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "22b9313d-ffae-49e3-8027-c86ef68f34de",
 "num_processed": 1
 },
 {
 "num_success": 0,
 "description": "Generating sqlite files",
 "step_type": "generate sqlite",
 "items_total": 1,
 "state": "SKIPPED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "fbc75485-e400-4cfa-bfa7-693edd8a832c",
 "num_processed": 0
 },
 {
 "num_success": 0,
 "description": "Generating HTML files",
 "step_type": "repoview",
 "items_total": 1,
 "state": "SKIPPED",
 "error_details": [

],

],
 "details": "",
 "num_failures": 0,
 "step_id": "bf1215fe-c617-4481-894a-1ff1c7c7043b",
 "num_processed": 0
 },
 {
 "num_success": 1,
 "description": "Publishing files to web",
 "step_type": "publish_directory",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "605ae2e4-c443-4a5b-ba9f-f313d23c4822",
 "num_processed": 1
 },
 {
 "num_success": 1,
 "description": "Writing Listings File",
 "step_type": "initialize_repo_metadata",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "9fa215e9-b465-4f33-9ddd-e05c5a9e314d",
 "num_processed": 1
 }
]
 },
 "queue": "reserved_resource_worker-1@dev.example.com.dq",
 "state": "finished",
 "worker_name": "reserved_resource_worker-1@dev.example.com",
 "result": {
 "result": "success",
 "exception": null,
 "repo_id": "scenario_test",
 "started": "2017-03-30T21:16:05Z",
 "_ns": "repo_publish_results",
 "completed": "2017-03-30T21:16:05Z",
 "traceback": null,
 "distributor_type_id": "yum_distributor",
 "summary": {
 "generate sqlite": "SKIPPED",
 "initialize_repo_metadata": "FINISHED",
 "rpms": "FINISHED",
 "repoview": "SKIPPED",
 "close_repo_metadata": "FINISHED",
 "drpms": "SKIPPED",
 "comps": "FINISHED",
 "distribution": "FINISHED",
 "save_tar": "FINISHED",
 "publish_directory": "FINISHED",
 "errata": "FINISHED",
 "metadata": "FINISHED"
 },
 "error_message": null,
 "distributor_id": "scenario_test",
 "id": "58dd7595418a8a0648b9bc53",
 "details": [
 {
 "num_success": 1,
 "description": "Copying files",
 "step_type": "save_tar",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "8fa5d08e-3473-4127-80f6-223bee0a0409",
 "num_processed": 1
 },
 {
 "num_success": 1,
 "description": "Initializing repo metadata",
 "step_type": "initialize_repo_metadata",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "32cee4d1-6e51-419a-9833-5f2c88e3efd9",
 "num_processed": 1
 },

 },
 {
 "num_success": 1,
 "description": "Publishing Distribution files",
 "step_type": "distribution",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "d62a1815-acd5-439c-b511-dcbd69edade4",
 "num_processed": 1
 },
 {
 "num_success": 8,
 "description": "Publishing RPMs",
 "step_type": "rpms",
 "items_total": 8,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "197b0894-07fd-470b-8bb4-5a55b9713d18",
 "num_processed": 8
 },
 {
 "num_success": 0,
 "description": "Publishing Delta RPMs",
 "step_type": "drpms",
 "items_total": 1,
 "state": "SKIPPED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "54795382-de70-4de3-a8ce-5f726b8f9cb2",
 "num_processed": 0
 },
 {
 "num_success": 3,
 "description": "Publishing Errata",
 "step_type": "errata",
 "items_total": 3,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "1996449c-9471-4988-b3ee-b7ceae0c6b41",
 "num_processed": 3
 },
 {
 "num_success": 3,
 "description": "Publishing Comps file",
 "step_type": "comps",
 "items_total": 3,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "f12472f5-4012-4112-afe0-49f57348e569",
 "num_processed": 3
 },
 {
 "num_success": 0,
 "description": "Publishing Metadata.",
 "step_type": "metadata",
 "items_total": 0,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "31efb1ef-a413-48be-99f2-7f4788a1cebd",
 "num_processed": 0
 },
 {
 "num_success": 1,
 "description": "Closing repo metadata",
 "step_type": "close_repo_metadata",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",

Request # 4: Distribution Search
POST /pulp/api/v2/repositories/scenario_test/search/units/

Backend Service: pulp

Description: Search for distribution information with all fields

Request body

 "details": "",
 "num_failures": 0,
 "step_id": "22b9313d-ffae-49e3-8027-c86ef68f34de",
 "num_processed": 1
 },
 {
 "num_success": 0,
 "description": "Generating sqlite files",
 "step_type": "generate sqlite",
 "items_total": 1,
 "state": "SKIPPED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "fbc75485-e400-4cfa-bfa7-693edd8a832c",
 "num_processed": 0
 },
 {
 "num_success": 0,
 "description": "Generating HTML files",
 "step_type": "repoview",
 "items_total": 1,
 "state": "SKIPPED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "bf1215fe-c617-4481-894a-1ff1c7c7043b",
 "num_processed": 0
 },
 {
 "num_success": 1,
 "description": "Publishing files to web",
 "step_type": "publish_directory",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "605ae2e4-c443-4a5b-ba9f-f313d23c4822",
 "num_processed": 1
 },
 {
 "num_success": 1,
 "description": "Writing Listings File",
 "step_type": "initialize_repo_metadata",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "9fa215e9-b465-4f33-9ddd-e05c5a9e314d",
 "num_processed": 1
 }
]
 },
 "error": null,
 "_id": {
 "$oid": "58dd7595e6919db96421ea23"
 },
 "id": "58dd7595e6919db96421ea23"
}

{
 "criteria": {
 "type_ids": [
 "distribution
"
]
 }
}

Response body

Request # 5: Fetch rpm unit ids for this repo
POST /pulp/api/v2/repositories/scenario_test/search/units/

Backend Service: pulp

Description:

Request body

Response body

[
 {
 "metadata": {
 "files": [
 {
 "relativepath": "images/test2.img",
 "checksumtype": "sha256",
 "checksum": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"
 },
 {
 "relativepath": "empty.iso",
 "checksumtype": "sha256",
 "checksum": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"
 },
 {
 "relativepath": "images/test1.img",
 "checksumtype": "sha256",
 "checksum": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"
 }
],
 "_storage_path": "/var/lib/pulp/content/units/distribution/9b/831256a124718bf39166b564d8e689954ff0a8f0f479ba24cfa26350109b
c5",
 "family": "Test Family",
 "downloaded": true,
 "timestamp": 1323112153.09,
 "_last_updated": 1490908565,
 "_content_type_id": "distribution",
 "variant": "TestVariant",
 "id": "ks-Test Family-TestVariant-16-x86_64",
 "version": "16",
 "version_sort_index": "02-16",
 "pulp_user_metadata": {
 },
 "packagedir": "",
 "_id": "be1ea9b9-518c-4c05-ab97-3d6102482158",
 "arch": "x86_64",
 "_ns": "units_distribution"
 },
 "updated": "2017-03-30T21:16:05Z",
 "repo_id": "scenario_test",
 "created": "2017-03-30T21:16:05Z",
 "unit_type_id": "distribution",
 "unit_id": "be1ea9b9-518c-4c05-ab97-3d6102482158",
 "_id": {
 "$oid": "58dd7595e6919db96421ea1c"
 }
 }
]

{
 "criteria": {
 "type_ids": [
 "rpm"
],
 "fields": {
 "unit": [

],
 "association":
[
 "unit_id"
]
 }
 }
}

[
 {
 "metadata": {
 "_id": "085babbb-3a43-4b9c-bdfb-915fd78c7bec",
 "_content_type_id": "rpm"
 },
 "_id": {
 "$oid": "58dd7595e6919db96421ea1a"
 },
 "unit_id": "085babbb-3a43-4b9c-bdfb-915fd78c7bec",
 "unit_type_id": "rpm"
 },
 {
 "metadata": {
 "_id": "2b00d383-f2c7-462c-bfe3-25a008caa0fe",
 "_content_type_id": "rpm"
 },
 "_id": {
 "$oid": "58dd7595e6919db96421ea18"
 },
 "unit_id": "2b00d383-f2c7-462c-bfe3-25a008caa0fe",
 "unit_type_id": "rpm"
 },
 {
 "metadata": {
 "_id": "5ee1ec3a-7f81-47e6-bbba-11b443251f29",
 "_content_type_id": "rpm"
 },
 "_id": {
 "$oid": "58dd7595e6919db96421ea15"
 },
 "unit_id": "5ee1ec3a-7f81-47e6-bbba-11b443251f29",
 "unit_type_id": "rpm"
 },
 {
 "metadata": {
 "_id": "6b8e6197-c155-4c8c-a931-aa5b85bd218c",
 "_content_type_id": "rpm"
 },
 "_id": {
 "$oid": "58dd7595e6919db96421ea17"
 },
 "unit_id": "6b8e6197-c155-4c8c-a931-aa5b85bd218c",
 "unit_type_id": "rpm"
 },
 {
 "metadata": {
 "_id": "7ff4f862-7ae7-4b20-b072-0d154a9cc527",
 "_content_type_id": "rpm"
 },
 "_id": {
 "$oid": "58dd7595e6919db96421ea16"
 },
 "unit_id": "7ff4f862-7ae7-4b20-b072-0d154a9cc527",
 "unit_type_id": "rpm"
 },
 {
 "metadata": {
 "_id": "9f6b8fda-dd97-453e-8841-093d05c8eac3",
 "_content_type_id": "rpm"
 },
 "_id": {
 "$oid": "58dd7595e6919db96421ea19"
 },
 "unit_id": "9f6b8fda-dd97-453e-8841-093d05c8eac3",
 "unit_type_id": "rpm"
 },
 {
 "metadata": {
 "_id": "d35640a0-8613-44bd-9e99-141af2843087",
 "_content_type_id": "rpm"
 },
 "_id": {
 "$oid": "58dd7595e6919db96421ea14"
 },
 "unit_id": "d35640a0-8613-44bd-9e99-141af2843087",
 "unit_type_id": "rpm"
 },
 {
 "metadata": {
 "_id": "f521f967-a646-436e-ba83-1ac9ef8f7cd8",
 "_content_type_id": "rpm"
 },
 "_id": {
 "$oid": "58dd7595e6919db96421ea1b"
 },
 "unit_id": "f521f967-a646-436e-ba83-1ac9ef8f7cd8",
 "unit_type_id": "rpm"
 }
]

Request # 6: Fetch rpm units for this repository
POST /pulp/api/v2/content/units/rpm/search/

Backend Service: pulp

Description: Search for all rpms with the previously fetched ids. We do this because historically we’ve wanted the list of all repo
ids for each unit, which is only available via this endpoint.

Request body

Response body

{
 "criteria": {
 "limit": 8,
 "skip": 0,
 "fields": [
 "name",
 "version",
 "release",
 "arch",
 "epoch",
 "summary",
 "sourcerpm",
 "checksum",
 "filename",
 "_id"
],
 "filters": {
 "_id": {
 "$in": [
 "085babbb-3a43-4b9c-bdfb-915fd78c7bec",
 "2b00d383-f2c7-462c-bfe3-25a008caa0fe",
 "5ee1ec3a-7f81-47e6-bbba-11b443251f29",
 "6b8e6197-c155-4c8c-a931-aa5b85bd218c"
,
 "7ff4f862-7ae7-4b20-b072-0d154a9cc527",
 "9f6b8fda-dd97-453e-8841-093d05c8eac3",
 "d35640a0-8613-44bd-9e99-141af2843087",
 "f521f967-a646-436e-ba83-1ac9ef8f7cd8"
]
 }
 }
 },
 "include_repos": true
}

[
 {
 "repository_memberships": [
 "scenario_test"
],
 "sourcerpm": "walrus-0.3-0.8.src.rpm",
 "name": "walrus",
 "checksum": "6e8d6dc057e3e2c9819f0dc7e6c7b7f86bf2e8571bba414adec7fb621a461dfd",
 "summary": "A dummy package of walrus",
 "filename": "walrus-0.3-0.8.noarch.rpm",
 "epoch": "0",
 "version": "0.3",
 "release": "0.8",
 "_id": "085babbb-3a43-4b9c-bdfb-915fd78c7bec",
 "arch": "noarch",
 "children": {
 },
 "_href": "/pulp/api/v2/content/units/rpm/085babbb-3a43-4b9c-bdfb-915fd78c7bec/"
 },
 {
 "repository_memberships": [
 "scenario_test"
],
 "sourcerpm": "penguin-0.3-0.8.src.rpm",
 "name": "penguin",
 "checksum": "3fcb2c927de9e13bf68469032a28b139d3e5ad2e58564fc210fd6e48635be694",
 "summary": "A dummy package of penguin",
 "filename": "penguin-0.3-0.8.noarch.rpm",
 "epoch": "0",
 "version": "0.3",
 "release": "0.8",
 "_id": "2b00d383-f2c7-462c-bfe3-25a008caa0fe",
 "arch": "noarch",
 "children": {
 },
 "_href": "/pulp/api/v2/content/units/rpm/2b00d383-f2c7-462c-bfe3-25a008caa0fe/"
 },
 {
 "repository_memberships": [
 "scenario_test"
],
 "sourcerpm": "elephant-0.3-0.8.src.rpm",

 "sourcerpm": "elephant-0.3-0.8.src.rpm",
 "name": "elephant",
 "checksum": "3e1c70cd1b421328acaf6397cb3d16145306bb95f65d1b095fc31372a0a701f3",
 "summary": "A dummy package of elephant",
 "filename": "elephant-0.3-0.8.noarch.rpm",
 "epoch": "0",
 "version": "0.3",
 "release": "0.8",
 "_id": "5ee1ec3a-7f81-47e6-bbba-11b443251f29",
 "arch": "noarch",
 "children": {
 },
 "_href": "/pulp/api/v2/content/units/rpm/5ee1ec3a-7f81-47e6-bbba-11b443251f29/"
 },
 {
 "repository_memberships": [
 "scenario_test"
],
 "sourcerpm": "monkey-0.3-0.8.src.rpm",
 "name": "monkey",
 "checksum": "0e8fa50d0128fbabc7ccc5632e3fa25d39b0280169f6166cb8e2c84de8501db1",
 "summary": "A dummy package of monkey",
 "filename": "monkey-0.3-0.8.noarch.rpm",
 "epoch": "0",
 "version": "0.3",
 "release": "0.8",
 "_id": "6b8e6197-c155-4c8c-a931-aa5b85bd218c",
 "arch": "noarch",
 "children": {
 },
 "_href": "/pulp/api/v2/content/units/rpm/6b8e6197-c155-4c8c-a931-aa5b85bd218c/"
 },
 {
 "repository_memberships": [
 "scenario_test"
],
 "sourcerpm": "lion-0.3-0.8.src.rpm",
 "name": "lion",
 "checksum": "12400dc95c23a4c160725a908716cd3fcdd7a8981585437ab64cd62efa3e4ae4",
 "summary": "A dummy package of lion",
 "filename": "lion-0.3-0.8.noarch.rpm",
 "epoch": "0",
 "version": "0.3",
 "release": "0.8",
 "_id": "7ff4f862-7ae7-4b20-b072-0d154a9cc527",
 "arch": "noarch",
 "children": {
 },
 "_href": "/pulp/api/v2/content/units/rpm/7ff4f862-7ae7-4b20-b072-0d154a9cc527/"
 },
 {
 "repository_memberships": [
 "scenario_test"
],
 "sourcerpm": "cheetah-0.3-0.8.src.rpm",
 "name": "cheetah",
 "checksum": "422d0baa0cd9d7713ae796e886a23e17f578f924f74880debdbb7d65fb368dae",
 "summary": "A dummy package of cheetah",
 "filename": "cheetah-0.3-0.8.noarch.rpm",
 "epoch": "0",
 "version": "0.3",
 "release": "0.8",
 "_id": "9f6b8fda-dd97-453e-8841-093d05c8eac3",
 "arch": "noarch",
 "children": {
 },
 "_href": "/pulp/api/v2/content/units/rpm/9f6b8fda-dd97-453e-8841-093d05c8eac3/"
 },
 {
 "repository_memberships": [
 "scenario_test"
],
 "sourcerpm": "giraffe-0.3-0.8.src.rpm",
 "name": "giraffe",
 "checksum": "f25d67d1d9da04f12e57ca323247b43891ac46533e355b82de6d1922009f9f14",
 "summary": "A dummy package of giraffe",
 "filename": "giraffe-0.3-0.8.noarch.rpm",
 "epoch": "0",
 "version": "0.3",
 "release": "0.8",
 "_id": "d35640a0-8613-44bd-9e99-141af2843087",
 "arch": "noarch",
 "children": {
 },
 "_href": "/pulp/api/v2/content/units/rpm/d35640a0-8613-44bd-9e99-141af2843087/"
 },
 {
 "repository_memberships": [
 "scenario_test"
],
 "sourcerpm": "squirrel-0.3-0.8.src.rpm",
 "name": "squirrel",
 "checksum": "251768bdd15f13d78487c27638aa6aecd01551e253756093cde1c0ae878a17d2",
 "summary": "A dummy package of squirrel",

Request # 7: Fetch Errata ids for repository
POST /pulp/api/v2/repositories/scenario_test/search/units/

Backend Service: pulp

Description:

Request body

Response body

Request # 8: Fetch errata units.
POST /pulp/api/v2/content/units/erratum/search/

Backend Service: pulp

Description: Using the previously fetched ids, we fetch all errata in the repo.

 "summary": "A dummy package of squirrel",
 "filename": "squirrel-0.3-0.8.noarch.rpm",
 "epoch": "0",
 "version": "0.3",
 "release": "0.8",
 "_id": "f521f967-a646-436e-ba83-1ac9ef8f7cd8",
 "arch": "noarch",
 "children": {
 },
 "_href": "/pulp/api/v2/content/units/rpm/f521f967-a646-436e-ba83-1ac9ef8f7cd8/"
 }
]

{
 "criteria": {
 "type_ids": [
 "erratum"
],
 "fields": {
 "unit": [

],
 "association":
[
 "unit_id"
]
 }
 }
}

[
 {
 "metadata": {
 "_id": "4b12197f-28b0-4d5c-bf8d-057dc0b378f1",
 "_content_type_id": "erratum"
 },
 "_id": {
 "$oid": "58dd7595e6919db96421ea1e"
 },
 "unit_id": "4b12197f-28b0-4d5c-bf8d-057dc0b378f1",
 "unit_type_id": "erratum"
 },
 {
 "metadata": {
 "_id": "5bc4a860-2872-461a-8061-b30626274615",
 "_content_type_id": "erratum"
 },
 "_id": {
 "$oid": "58dd7595e6919db96421ea1f"
 },
 "unit_id": "5bc4a860-2872-461a-8061-b30626274615",
 "unit_type_id": "erratum"
 },
 {
 "metadata": {
 "_id": "c12277ae-b619-40cc-afbc-75c92e78ca13",
 "_content_type_id": "erratum"
 },
 "_id": {
 "$oid": "58dd7595e6919db96421ea1d"
 },
 "unit_id": "c12277ae-b619-40cc-afbc-75c92e78ca13",
 "unit_type_id": "erratum"
 }
]

Request body

Response body

{
 "criteria": {
 "limit": 3,
 "skip": 0,
 "filters": {
 "_id": {
 "$in": [
 "4b12197f-28b0-4d5c-bf8d-057dc0b378f1",
 "5bc4a860-2872-461a-8061-b30626274615"
,
 "c12277ae-b619-40cc-afbc-75c92e78ca13"
]
 }
 }
 },
 "include_repos": true
}

[
 {
 "repository_memberships": [
 "scenario_test"
],
 "_href": "/pulp/api/v2/content/units/erratum/4b12197f-28b0-4d5c-bf8d-057dc0b378f1/",
 "issued": "2010-11-10 00:00:00",
 "references": [
 {
 "href": "https://rhn.redhat.com/errata/RHSA-2010-0858.html",
 "type": "self",
 "id": null,
 "title": "RHSA-2010:0858"
 },
 {
 "href": "https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=627882",
 "type": "bugzilla",
 "id": "627882",
 "title": "CVE-2010-0405 bzip2: integer overflow flaw in BZ2_decompress"
 },
 {
 "href": "https://www.redhat.com/security/data/cve/CVE-2010-0405.html",
 "type": "cve",
 "id": "CVE-2010-0405",
 "title": "CVE-2010-0405"
 },
 {
 "href": "http://www.redhat.com/security/updates/classification/#important",
 "type": "other",
 "id": null,
 "title": null
 }
],
 "pulp_user_metadata": {
 },
 "_content_type_id": "erratum",
 "id": "RHSA-2010:0858",
 "from": "security@redhat.com",
 "severity": "Important",
 "title": "Important: bzip2 security update",
 "children": {
 },
 "version": "3",
 "reboot_suggested": false,
 "type": "security",
 "pkglist": [
 {
 "_pulp_repo_id": "scenario_test",
 "packages": [
 {
 "src": "bzip2-1.0.5-7.el6_0.src.rpm",
 "name": "bzip2-devel",
 "sum": [
 "sha256",
 "ea67c664da1ff96a6dc94d33009b73d8fab31b59824183fb45e9ba2ebf82d583"
],
 "filename": "bzip2-devel-1.0.5-7.el6_0.i686.rpm",
 "epoch": "0",
 "version": "1.0.5",
 "release": "7.el6_0",
 "arch": "i686"
 },
 {
 "src": "bzip2-1.0.5-7.el6_0.src.rpm",
 "name": "bzip2-libs",
 "sum": [
 "sha256",
 "c9f064a6862573fb9f2a6aff7c3621f1940b492df2edfc2ebbdc0b8305f51147"
],

],
 "filename": "bzip2-libs-1.0.5-7.el6_0.i686.rpm",
 "epoch": "0",
 "version": "1.0.5",
 "release": "7.el6_0",
 "arch": "i686"
 },
 {
 "src": "bzip2-1.0.5-7.el6_0.src.rpm",
 "name": "bzip2",
 "sum": [
 "sha256",
 "b8a3f72bc2b0d89ba737099ac98bf8d2af4bea02d31884c02db97f7f66c3d5c2"
],
 "filename": "bzip2-1.0.5-7.el6_0.x86_64.rpm",
 "epoch": "0",
 "version": "1.0.5",
 "release": "7.el6_0",
 "arch": "x86_64"
 },
 {
 "src": "bzip2-1.0.5-7.el6_0.src.rpm",
 "name": "bzip2-devel",
 "sum": [
 "sha256",
 "7f63124e4655b7c92d23ec4c38226f5d3746568853dff750fc85e058e74b5cf6"
],
 "filename": "bzip2-devel-1.0.5-7.el6_0.x86_64.rpm",
 "epoch": "0",
 "version": "1.0.5",
 "release": "7.el6_0",
 "arch": "x86_64"
 },
 {
 "src": "bzip2-1.0.5-7.el6_0.src.rpm",
 "name": "bzip2-libs",
 "sum": [
 "sha256",
 "802f4399dbdd01476e254c3b32c40aff59cf5d23a45fa488c6917ce8904d6b4d"
],
 "filename": "bzip2-libs-1.0.5-7.el6_0.x86_64.rpm",
 "epoch": "0",
 "version": "1.0.5",
 "release": "7.el6_0",
 "arch": "x86_64"
 }
],
 "name": "Red Hat Enterprise Linux Server (v. 6 for 64-bit x86_64)",
 "short": "rhel-x86_64-server-6"
 }
],
 "status": "final",
 "updated": "2010-11-10 00:00:00",
 "description": "bzip2 is a freely available, high-quality data compressor. It provides both\nlibbz2 library must be restarted for the upd
ate to take effect.",
 "_last_updated": "2017-03-30T21:16:05Z",
 "pushcount": "",
 "rights": "Copyright 2010 Red Hat Inc",
 "solution": "Before applying this update, make sure all previously-released errata\nrelevant to your system have been applied.\n\nT
his update is available via the Red Hat Network. Details on how to\nuse the Red Hat Network to apply this update are available at\nht
tp://kbase.redhat.com/faq/docs/DOC-11259",
 "summary": "Updated bzip2 packages that fix one security issue",
 "release": "",
 "_id": "4b12197f-28b0-4d5c-bf8d-057dc0b378f1"
 },
 {
 "repository_memberships": [
 "scenario_test"
],
 "_href": "/pulp/api/v2/content/units/erratum/5bc4a860-2872-461a-8061-b30626274615/",
 "issued": "2010-01-01 01:01:01",
 "references": [

],
 "pulp_user_metadata": {
 },
 "_content_type_id": "erratum",
 "id": "RHEA-2010:0002",
 "from": "lzap+pub@redhat.com",
 "severity": "",
 "title": "One package errata",
 "children": {
 },
 "version": "1",
 "reboot_suggested": false,
 "type": "security",
 "pkglist": [
 {
 "_pulp_repo_id": "scenario_test",
 "packages": [
 {
 "src": "http://www.fedoraproject.org",
 "name": "elephant",
 "sum": null,

Request # 9: Fetch package group units for repository
POST /pulp/api/v2/repositories/scenario_test/search/units/

Backend Service: pulp

Description:

Request body

Response body

 "sum": null,
 "filename": "elephant-0.3-0.8.noarch.rpm",
 "epoch": null,
 "version": "0.3",
 "release": "0.8",
 "arch": "noarch"
 }
],
 "name": "1",
 "short": ""
 }
],
 "status": "stable",
 "updated": "",
 "description": "One package errata",
 "_last_updated": "2017-03-30T21:16:05Z",
 "pushcount": "",
 "rights": "",
 "solution": "",
 "summary": "",
 "release": "1",
 "_id": "5bc4a860-2872-461a-8061-b30626274615"
 },
 {
 "repository_memberships": [
 "scenario_test"
],
 "_href": "/pulp/api/v2/content/units/erratum/c12277ae-b619-40cc-afbc-75c92e78ca13/",
 "issued": "2010-01-01 01:01:01",
 "references": [

],
 "pulp_user_metadata": {
 },
 "_content_type_id": "erratum",
 "id": "RHEA-2010:0001",
 "from": "lzap+pub@redhat.com",
 "severity": "",
 "title": "Empty errata",
 "children": {
 },
 "version": "1",
 "reboot_suggested": false,
 "type": "security",
 "pkglist": [

],
 "status": "stable",
 "updated": "",
 "description": "Empty errata",
 "_last_updated": "2017-03-30T21:16:05Z",
 "pushcount": "",
 "rights": "",
 "solution": "",
 "summary": "",
 "release": "1",
 "_id": "c12277ae-b619-40cc-afbc-75c92e78ca13"
 }
]

{
 "criteria": {
 "type_ids": [
 "package_group
"
],
 "fields": {
 "unit": [

],
 "association": [
 "unit_id"
]
 }
 }
}

Request # 10: Fetch package group ids for repository
POST /pulp/api/v2/content/units/package_group/search/

Backend Service: pulp

Description: Using the previously fetched ids, we fetch all package groups in the repo.

Request body

Response body

[
 {
 "metadata": {
 "_id": "919baa7e-e944-4602-b3ed-3aef2ae5b509",
 "_content_type_id": "package_group"
 },
 "_id": {
 "$oid": "58dd7595e6919db96421ea21"
 },
 "unit_id": "919baa7e-e944-4602-b3ed-3aef2ae5b509",
 "unit_type_id": "package_group"
 },
 {
 "metadata": {
 "_id": "c55b5b16-7501-4863-8e3f-f7520bc795fd",
 "_content_type_id": "package_group"
 },
 "_id": {
 "$oid": "58dd7595e6919db96421ea20"
 },
 "unit_id": "c55b5b16-7501-4863-8e3f-f7520bc795fd",
 "unit_type_id": "package_group"
 }
]

{
 "criteria": {
 "limit": 2,
 "skip": 0,
 "filters": {
 "_id": {
 "$in": [
 "919baa7e-e944-4602-b3ed-3aef2ae5b509"
,
 "c55b5b16-7501-4863-8e3f-f7520bc795fd"
]
 }
 }
 },
 "include_repos": true
}

Request # 11: Request applicability generation for consumers bound to
the repository
POST /pulp/api/v2/repositories/actions/content/regenerate_applicability//

Backend Service: pulp

Description:

Request body

[
 {
 "repository_memberships": [
 "scenario_test"
],
 "mandatory_package_names": [
 "elephant,giraffe,cheetah,lion,monkey,penguin,squirrel,walrus",
 "penguin"
],
 "repo_id": "scenario_test",
 "name": "mammal",
 "user_visible": true,
 "default": true,
 "_last_updated": "2017-03-30T18:41:08Z",
 "children": {
 },
 "optional_package_names": [

],
 "translated_name": {
 },
 "_href": "/pulp/api/v2/content/units/package_group/919baa7e-e944-4602-b3ed-3aef2ae5b509/",
 "translated_description": {
 },
 "pulp_user_metadata": {
 },
 "default_package_names": [

],
 "_content_type_id": "package_group",
 "id": "mammal",
 "_id": "919baa7e-e944-4602-b3ed-3aef2ae5b509",
 "display_order": 1024,
 "conditional_package_names": [

]
 },
 {
 "repository_memberships": [
 "scenario_test"
],
 "mandatory_package_names": [
 "penguin"
],
 "repo_id": "scenario_test",
 "name": "bird",
 "user_visible": true,
 "default": true,
 "_last_updated": "2017-03-30T18:41:08Z",
 "children": {
 },
 "optional_package_names": [

],
 "translated_name": {
 },
 "_href": "/pulp/api/v2/content/units/package_group/c55b5b16-7501-4863-8e3f-f7520bc795fd/",
 "translated_description": {
 },
 "pulp_user_metadata": {
 },
 "default_package_names": [

],
 "_content_type_id": "package_group",
 "id": "bird",
 "_id": "c55b5b16-7501-4863-8e3f-f7520bc795fd",
 "display_order": 1024,
 "conditional_package_names": [

]
 }
]

Response body

Request # 12: Monitor task group status
GET /pulp/api/v2/task_groups/b0e268a7-f4bf-4598-90a3-5fc3b562cc95/state_summary/

Backend Service: pulp

Description: Monitor status of the applicability generation

Request body

None

Response body

Request # 13: Fetch repository details
GET /pulp/api/v2/repositories/scenario_test/

Backend Service: pulp

Description: Unclear why

Request body

None

Response body

{
 "parallel": true,
 "repo_criteria": {
 "filters": {
 "id": {
 "$in": [
 "scenario_test
"
]
 }
 }
 }
}

{
 "group_id": "b0e268a7-f4bf-4598-90a3-5fc3b562cc95",
 "_href": "/pulp/api/v2/task_groups/b0e268a7-f4bf-4598-90a3-5fc3b562cc95/"
}

{
 "accepted": 0,
 "finished": 0,
 "running": 0,
 "canceled": 0,
 "waiting": 0,
 "skipped": 0,
 "suspended": 0,
 "error": 0,
 "total": 0
}

{
 "scratchpad": {
 "checksum_type": "sha256"
 },
 "display_name": "Scenario yum product",
 "description": null,
 "distributors": [
 {
 "repo_id": "scenario_test",
 "last_updated": "2017-03-30T21:15:43Z",
 "_href": "/pulp/api/v2/repositories/scenario_test/distributors/scenario_test_clone/"
,
 "last_override_config": {
 },
 "last_publish": null,
 "distributor_type_id": "yum_clone_distributor",
 "auto_publish": false,
 "scratchpad": {
 },
 "_ns": "repo_distributors",
 "_id": {
 "$oid": "58dd757f418a8a04f88de7da"
 },

 },
 "config": {
 "destination_distributor_id": "scenario_test"
 },
 "id": "scenario_test_clone"
 },
 {
 "repo_id": "scenario_test",
 "last_updated": "2017-03-30T21:16:05Z",
 "_href": "/pulp/api/v2/repositories/scenario_test/distributors/scenario_test/",
 "last_override_config": {
 },
 "last_publish": "2017-03-30T21:16:05Z",
 "distributor_type_id": "yum_distributor",
 "auto_publish": true,
 "scratchpad": {
 },
 "_ns": "repo_distributors",
 "_id": {
 "$oid": "58dd757f418a8a04f88de7d8"
 },
 "config": {
 "checksum_type": "sha256",
 "protected": true,
 "http": false,
 "https": true,
 "relative_url": "scenario_test"
 },
 "id": "scenario_test"
 },
 {
 "repo_id": "scenario_test",
 "last_updated": "2017-03-30T21:15:43Z",
 "_href": "/pulp/api/v2/repositories/scenario_test/distributors/export_distributor/",
 "last_override_config": {
 },
 "last_publish": null,
 "distributor_type_id": "export_distributor",
 "auto_publish": false,
 "scratchpad": {
 },
 "_ns": "repo_distributors",
 "_id": {
 "$oid": "58dd757f418a8a04f88de7d9"
 },
 "config": {
 "http": false,
 "relative_url": "scenario_test",
 "https": false
 },
 "id": "export_distributor"
 }
],
 "last_unit_added": "2017-03-30T21:16:05Z",
 "notes": {
 "_repo-type": "rpm-repo"
 },
 "last_unit_removed": null,
 "content_unit_counts": {
 "package_group": 2,
 "distribution": 1,
 "package_category": 1,
 "rpm": 8,
 "erratum": 3
 },
 "_ns": "repos",
 "importers": [
 {
 "repo_id": "scenario_test",
 "last_updated": "2017-03-30T21:15:43Z",
 "_href": "/pulp/api/v2/repositories/scenario_test/importers/yum_importer/",
 "_ns": "repo_importers",
 "importer_type_id": "yum_importer",
 "last_override_config": {
 "num_threads": 4,
 "validate": true
 },
 "last_sync": "2017-03-30T21:16:05Z",
 "scratchpad": {
 "repomd_revision": 1321893800
 },
 "_id": {
 "$oid": "58dd757f418a8a04f88de7d7"
 },
 "config": {
 "feed": "file:///var/www/test_repos/zoo",
 "ssl_validation": true,
 "remove_missing": true,
 "download_policy": "immediate"
 },
 "id": "yum_importer"
 }
],
 "locally_stored_units": 15,

Repository Create
Request # 1: Create Content
POST /candlepin/owners/scenario_test/content/

Backend Service: candlepin

Description: Create Content object for repository, for subscription-manager content access

Request body

Response body

Request # 2: Associate content object
POST /candlepin/owners/scenario_test/products/272869743822/content/1490908543901

Backend Service: candlepin

Description: Add the Content object to the product

Request body

None

Response body

 "locally_stored_units": 15,
 "_id": {
 "$oid": "58dd757f418a8a04f88de7d6"
 },
 "total_repository_units": 15,
 "id": "scenario_test",
 "_href": "/pulp/api/v2/repositories/scenario_test/"
}

{
 "name": "Scenario yum product",
 "contentUrl": "/custom/Scenario_Product/Scenario_yum_product",
 "type": "yum",
 "label": "scenario_test_Scenario_Product_Scenario_yum_product",
 "metadataExpire": 1,
 "vendor": "Custom"
}

{
 "created": "2017-03-30T21:15:43+0000",
 "updated": "2017-03-30T21:15:43+0000",
 "uuid": "4028f9515b20f31e015b2112fba4000d",
 "id": "1490908543901",
 "type": "yum",
 "label": "scenario_test_Scenario_Product_Scenario_yum_product",
 "name": "Scenario yum product",
 "vendor": "Custom",
 "contentUrl": "/custom/Scenario_Product/Scenario_yum_product",
 "requiredTags": null,
 "gpgUrl": null,
 "metadataExpire": 1,
 "modifiedProductIds": [

],
 "arches": null,
 "releaseVer": null
}

Request # 3: Retrieve candlepin environment
GET /candlepin/environments/119c4753ff6d3b7bd0b76de6d5a5f94a

Backend Service: candlepin

Description: Retrieve the environment object (TODO WHY?)

Request body

None

Response body

Request # 4: Create Pulp Repository
POST /pulp/api/v2/repositories/

Backend Service: pulp

Description:

{
 "created": "2017-03-30T21:15:42+0000",
 "updated": "2017-03-30T21:15:44+0000",
 "uuid": "4028f9515b20f31e015b2112fc03000e",
 "id": "272869743822",
 "name": "Scenario Product",
 "multiplier": 1,
 "attributes": [
 {
 "created": "2017-03-30T21:15:42+0000",
 "updated": "2017-03-30T21:15:44+0000",
 "name": "arch",
 "value": "ALL"
 }
],
 "dependentProductIds": [

],
 "href": "/products/4028f9515b20f31e015b2112fc03000e",
 "productContent": [
 {
 "content": {
 "created": "2017-03-30T21:15:43+0000",
 "updated": "2017-03-30T21:15:43+0000",
 "uuid": "4028f9515b20f31e015b2112fba4000d",
 "id": "1490908543901",
 "type": "yum",
 "label": "scenario_test_Scenario_Product_Scenario_yum_product"
,
 "name": "Scenario yum product",
 "vendor": "Custom",
 "contentUrl": "/custom/Scenario_Product/Scenario_yum_product",
 "requiredTags": null,
 "gpgUrl": null,
 "metadataExpire": 1,
 "modifiedProductIds": [

],
 "arches": null,
 "releaseVer": null
 },
 "enabled": true
 }
]
}

{
 "owner": {
 "id": "4028f9515b20f31e015b2112f2550004",
 "key": "scenario_test",
 "displayName": "scenario_test",
 "href": "/owners/scenario_test"
 },
 "name": "Library",
 "description": null,
 "id": "119c4753ff6d3b7bd0b76de6d5a5f94a",
 "environmentContent": [

],
 "created": "2017-03-30T21:15:41+0000",
 "updated": "2017-03-30T21:15:41+0000"
}

Request body

Response body

Request # 5: Add Content To environment
POST /candlepin/environments/119c4753ff6d3b7bd0b76de6d5a5f94a/content

Backend Service: candlepin

Description: Associates content object to “Library” environment, so it is accessible by clients registered to Library

Request body

{
 "id": "scenario_test",
 "display_name": "Scenario yum product",
 "importer_type_id": "yum_importer",
 "importer_config": {
 "feed": "file:///var/www/test_repos/zoo",
 "ssl_ca_cert": null,
 "ssl_client_cert": null,
 "ssl_client_key": null,
 "ssl_validation": true,
 "download_policy": "immediate",
 "remove_missing": true
 },
 "notes": {
 "_repo-type": "rpm-repo"
 },
 "distributors": [
 {
 "distributor_type_id": "yum_distributor",
 "distributor_config": {
 "relative_url": "scenario_test",
 "http": false,
 "https": true,
 "protected": true
 },
 "auto_publish": true,
 "distributor_id": "scenario_test"
 },
 {
 "distributor_type_id": "export_distributor",
 "distributor_config": {
 "http": false,
 "https": false,
 "relative_url": "scenario_test"
 },
 "auto_publish": false,
 "distributor_id": "export_distributor"
 },
 {
 "distributor_type_id": "yum_clone_distributor"
,
 "distributor_config": {
 "destination_distributor_id": "scenario_test"
 },
 "auto_publish": false,
 "distributor_id": "scenario_test_clone"
 }
]
}

{
 "scratchpad": {
 },
 "display_name": "Scenario yum product",
 "description": null,
 "last_unit_added": null,
 "notes": {
 "_repo-type": "rpm-repo"
 },
 "last_unit_removed": null,
 "content_unit_counts": {
 },
 "_ns": "repos",
 "_id": {
 "$oid": "58dd757f418a8a04f88de7d6"
 },
 "id": "scenario_test",
 "_href": "/pulp/api/v2/repositories/scenario_test/"
}

Response body

Request # 6: Fetch repository information
GET /pulp/api/v2/repositories/scenario_test/

Backend Service: pulp

Description:

Request body

None

Response body

[
 {
 "contentId": "1490908543901"
 }
]

{
 "id": "regen_entitlement_cert_of_envda871caa-8138-4edd-acc9-605195f992a4",
 "state": "CREATED",
 "startTime": null,
 "finishTime": null,
 "result": null,
 "principalName": "foreman_admin",
 "targetType": null,
 "targetId": null,
 "ownerId": null,
 "resultData": null,
 "statusPath": "/jobs/regen_entitlement_cert_of_envda871caa-8138-4edd-acc9-605195f992a4",
 "done": false,
 "group": "async group",
 "created": "2017-03-30T21:15:44+0000",
 "updated": "2017-03-30T21:15:44+0000"
}

{
 "scratchpad": {
 },
 "display_name": "Scenario yum product",
 "description": null,
 "distributors": [
 {
 "repo_id": "scenario_test",
 "last_updated": "2017-03-30T21:15:43Z",
 "_href": "/pulp/api/v2/repositories/scenario_test/distributors/scenario_test_clone/"
,
 "last_override_config": {
 },
 "last_publish": null,
 "distributor_type_id": "yum_clone_distributor",
 "auto_publish": false,
 "scratchpad": {
 },
 "_ns": "repo_distributors",
 "_id": {
 "$oid": "58dd757f418a8a04f88de7da"
 },
 "config": {
 "destination_distributor_id": "scenario_test"
 },
 "id": "scenario_test_clone"
 },
 {
 "repo_id": "scenario_test",
 "last_updated": "2017-03-30T21:15:43Z",
 "_href": "/pulp/api/v2/repositories/scenario_test/distributors/scenario_test/",
 "last_override_config": {
 },
 "last_publish": null,
 "distributor_type_id": "yum_distributor",
 "auto_publish": true,
 "scratchpad": {
 },
 "_ns": "repo_distributors",
 "_id": {
 "$oid": "58dd757f418a8a04f88de7d8"
 },
 "config": {
 "protected": true,
 "http": false,
 "https": true,

Request # 7: Publish repository metadata
POST /pulp/api/v2/repositories/scenario_test/actions/publish/

Backend Service: pulp

Description: Publish the repository, generating empty metadata so that existing clients of that product do not get a 404.

Request body

Response body

 "https": true,
 "relative_url": "scenario_test"
 },
 "id": "scenario_test"
 },
 {
 "repo_id": "scenario_test",
 "last_updated": "2017-03-30T21:15:43Z",
 "_href": "/pulp/api/v2/repositories/scenario_test/distributors/export_distributor/",
 "last_override_config": {
 },
 "last_publish": null,
 "distributor_type_id": "export_distributor",
 "auto_publish": false,
 "scratchpad": {
 },
 "_ns": "repo_distributors",
 "_id": {
 "$oid": "58dd757f418a8a04f88de7d9"
 },
 "config": {
 "http": false,
 "relative_url": "scenario_test",
 "https": false
 },
 "id": "export_distributor"
 }
],
 "last_unit_added": null,
 "notes": {
 "_repo-type": "rpm-repo"
 },
 "last_unit_removed": null,
 "content_unit_counts": {
 },
 "_ns": "repos",
 "importers": [
 {
 "repo_id": "scenario_test",
 "last_updated": "2017-03-30T21:15:43Z",
 "_href": "/pulp/api/v2/repositories/scenario_test/importers/yum_importer/",
 "_ns": "repo_importers",
 "importer_type_id": "yum_importer",
 "last_override_config": {
 },
 "last_sync": null,
 "scratchpad": null,
 "_id": {
 "$oid": "58dd757f418a8a04f88de7d7"
 },
 "config": {
 "feed": "file:///var/www/test_repos/zoo",
 "ssl_validation": true,
 "remove_missing": true,
 "download_policy": "immediate"
 },
 "id": "yum_importer"
 }
],
 "locally_stored_units": 0,
 "_id": {
 "$oid": "58dd757f418a8a04f88de7d6"
 },
 "total_repository_units": 0,
 "id": "scenario_test",
 "_href": "/pulp/api/v2/repositories/scenario_test/"
}

{
 "id": "scenario_test",
 "override_config": {
 "force_full": false
 }
}

Request # 8: Poll Task
GET /pulp/api/v2/tasks/dfdb7cae-e465-4885-b3a4-7bb29343b69e/

Backend Service: pulp

Description: Monitor the task status of the publish

Total Requests for this URL: 6

Request body

None

Response body

{
 "spawned_tasks": [
 {
 "_href": "/pulp/api/v2/tasks/dfdb7cae-e465-4885-b3a4-7bb29343b69e/"
,
 "task_id": "dfdb7cae-e465-4885-b3a4-7bb29343b69e"
 }
],
 "result": null,
 "error": null
}

{
 "exception": null,
 "task_type": "pulp.server.managers.repo.publish.publish",
 "_href": "/pulp/api/v2/tasks/dfdb7cae-e465-4885-b3a4-7bb29343b69e/",
 "task_id": "dfdb7cae-e465-4885-b3a4-7bb29343b69e",
 "tags": [
 "pulp:repository:scenario_test",
 "pulp:action:publish"
],
 "finish_time": "2017-03-30T21:15:44Z",
 "_ns": "task_status",
 "start_time": "2017-03-30T21:15:44Z",
 "traceback": null,
 "spawned_tasks": [

],
 "progress_report": {
 "scenario_test": [
 {
 "num_success": 1,
 "description": "Initializing repo metadata",
 "step_type": "initialize_repo_metadata",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "e3a30d24-1111-4080-92f8-0a3dc979ae9c",
 "num_processed": 1
 },
 {
 "num_success": 0,
 "description": "Publishing Distribution files",
 "step_type": "distribution",
 "items_total": 0,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "c2edbc90-716d-4570-a442-bd0c22748f88",
 "num_processed": 0
 },
 {
 "num_success": 0,
 "description": "Publishing RPMs",
 "step_type": "rpms",
 "items_total": 0,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "bfea7f15-21d9-4cf0-af2a-5cce0c1c172b",
 "num_processed": 0
 },
 {

 {
 "num_success": 0,
 "description": "Publishing Delta RPMs",
 "step_type": "drpms",
 "items_total": 1,
 "state": "SKIPPED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "47621356-70b3-4e77-a8f2-ee1ec0c5c2ee",
 "num_processed": 0
 },
 {
 "num_success": 0,
 "description": "Publishing Errata",
 "step_type": "errata",
 "items_total": 0,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "8e46b5e2-89f5-4ef5-80bd-0d2aab9dd2a0",
 "num_processed": 0
 },
 {
 "num_success": 0,
 "description": "Publishing Comps file",
 "step_type": "comps",
 "items_total": 0,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "050aba89-abec-4949-b3cf-28409d9519e0",
 "num_processed": 0
 },
 {
 "num_success": 0,
 "description": "Publishing Metadata.",
 "step_type": "metadata",
 "items_total": 0,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "70efd383-905d-4fe2-8c9b-4e18311e76d5",
 "num_processed": 0
 },
 {
 "num_success": 1,
 "description": "Closing repo metadata",
 "step_type": "close_repo_metadata",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "e3ae5910-8f8d-4e53-abd6-007a9495e0b4",
 "num_processed": 1
 },
 {
 "num_success": 0,
 "description": "Generating sqlite files",
 "step_type": "generate sqlite",
 "items_total": 1,
 "state": "SKIPPED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "ae023865-a176-4434-b8ab-77a080306602",
 "num_processed": 0
 },
 {
 "num_success": 0,
 "description": "Generating HTML files",
 "step_type": "repoview",
 "items_total": 1,
 "state": "SKIPPED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,

 "num_failures": 0,
 "step_id": "4d7ca329-7b33-478e-a0a5-777771d8c7c6",
 "num_processed": 0
 },
 {
 "num_success": 1,
 "description": "Publishing files to web",
 "step_type": "publish_directory",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "0989644f-85dc-43ff-9e0f-10c814a8d5e8",
 "num_processed": 1
 },
 {
 "num_success": 1,
 "description": "Writing Listings File",
 "step_type": "initialize_repo_metadata",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "04b588ee-11fe-4b09-8a42-2ea465247c0b",
 "num_processed": 1
 }
]
 },
 "queue": "reserved_resource_worker-1@dev.example.com.dq",
 "state": "finished",
 "worker_name": "reserved_resource_worker-1@dev.example.com",
 "result": {
 "result": "success",
 "exception": null,
 "repo_id": "scenario_test",
 "started": "2017-03-30T21:15:44Z",
 "_ns": "repo_publish_results",
 "completed": "2017-03-30T21:15:44Z",
 "traceback": null,
 "distributor_type_id": "yum_distributor",
 "summary": {
 "generate sqlite": "SKIPPED",
 "initialize_repo_metadata": "FINISHED",
 "rpms": "FINISHED",
 "close_repo_metadata": "FINISHED",
 "drpms": "SKIPPED",
 "comps": "FINISHED",
 "distribution": "FINISHED",
 "repoview": "SKIPPED",
 "publish_directory": "FINISHED",
 "errata": "FINISHED",
 "metadata": "FINISHED"
 },
 "error_message": null,
 "distributor_id": "scenario_test",
 "id": "58dd7580418a8a0648b9bc40",
 "details": [
 {
 "num_success": 1,
 "description": "Initializing repo metadata",
 "step_type": "initialize_repo_metadata",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "e3a30d24-1111-4080-92f8-0a3dc979ae9c",
 "num_processed": 1
 },
 {
 "num_success": 0,
 "description": "Publishing Distribution files",
 "step_type": "distribution",
 "items_total": 0,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "c2edbc90-716d-4570-a442-bd0c22748f88",
 "num_processed": 0
 },
 {
 "num_success": 0,
 "description": "Publishing RPMs",

 "description": "Publishing RPMs",
 "step_type": "rpms",
 "items_total": 0,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "bfea7f15-21d9-4cf0-af2a-5cce0c1c172b",
 "num_processed": 0
 },
 {
 "num_success": 0,
 "description": "Publishing Delta RPMs",
 "step_type": "drpms",
 "items_total": 1,
 "state": "SKIPPED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "47621356-70b3-4e77-a8f2-ee1ec0c5c2ee",
 "num_processed": 0
 },
 {
 "num_success": 0,
 "description": "Publishing Errata",
 "step_type": "errata",
 "items_total": 0,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "8e46b5e2-89f5-4ef5-80bd-0d2aab9dd2a0",
 "num_processed": 0
 },
 {
 "num_success": 0,
 "description": "Publishing Comps file",
 "step_type": "comps",
 "items_total": 0,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "050aba89-abec-4949-b3cf-28409d9519e0",
 "num_processed": 0
 },
 {
 "num_success": 0,
 "description": "Publishing Metadata.",
 "step_type": "metadata",
 "items_total": 0,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "70efd383-905d-4fe2-8c9b-4e18311e76d5",
 "num_processed": 0
 },
 {
 "num_success": 1,
 "description": "Closing repo metadata",
 "step_type": "close_repo_metadata",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "e3ae5910-8f8d-4e53-abd6-007a9495e0b4",
 "num_processed": 1
 },
 {
 "num_success": 0,
 "description": "Generating sqlite files",
 "step_type": "generate sqlite",
 "items_total": 1,
 "state": "SKIPPED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "ae023865-a176-4434-b8ab-77a080306602",
 "num_processed": 0

 "num_processed": 0
 },
 {
 "num_success": 0,
 "description": "Generating HTML files",
 "step_type": "repoview",
 "items_total": 1,
 "state": "SKIPPED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "4d7ca329-7b33-478e-a0a5-777771d8c7c6",
 "num_processed": 0
 },
 {
 "num_success": 1,
 "description": "Publishing files to web",
 "step_type": "publish_directory",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "0989644f-85dc-43ff-9e0f-10c814a8d5e8",
 "num_processed": 1
 },
 {
 "num_success": 1,
 "description": "Writing Listings File",
 "step_type": "initialize_repo_metadata",
 "items_total": 1,
 "state": "FINISHED",
 "error_details": [

],
 "details": "",
 "num_failures": 0,
 "step_id": "04b588ee-11fe-4b09-8a42-2ea465247c0b",
 "num_processed": 1
 }
]
 },
 "error": null,
 "_id": {
 "$oid": "58dd7580e6919db96421ea12"
 },
 "id": "58dd7580e6919db96421ea12"
}

Foreman 2.3.3 has been released! Follow the quick start to install it.

Foreman 2.2.2 has been released! Follow the quick start to install it.

View our Privacy Policy

This web site is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Source available: github/theforeman/theforeman.org

Thanks to our sponsors for hosting this website and our project services.

